NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SIMPLE: A PROTOTYPE SOFTWARE
FAULT-INJECTION TOOL

by

Neil John P. Acantilado
Christopher P. Acantilado

December 2002

Thesis Advisor: J. Bret Michael
Second Reader: Richard H. Riehle

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 2002 Master’s Thesis

4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS |
SIMPLE: A Prototype Software Fault-Injection Tool

6. AUTHOR(S) Neil John P. Acantilado & Christopher P. Acantilado

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimnted.

13. ABSTRACT (maximum 200 words)

Fault-injection techniques can be used to methodically assess the degree of fault tolerance
afforded by a system. In this thesis, we introduce a Java-based, semi-automatic fault-injection
test harness, called Software Fault Injection Mechanized Prototype Lightweight Engine
(SIMPLE). SIMPLE employs a state-based fault injection approach designed to validate test
suites. It also can assist developers to assess the properties of a system such as robustness,
reliability, and performance. SIMPLE employs fault acceleration to test a system’s fault-
tolerant capabilities. We present an object-oriented analysis of the system and several case
studies, using software fault injection on specific, targeted systems, to assess SIMPLE’s
effectiveness.

14. SUBJECT TERMS Software Fault Injection, Fault Tolerance, Software Testing, Software Test | 15. NUMBER OF
Coverage, and Metrics PAGES 226

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

il

Approved for public release; distribution is unlimited
SIMPLE: A PROTOTYPE SOFTWARE FAULT-INJECTION TOOL
Neil John P. Acantilado
B.A., University of California San Diego, 1992

Christopher P. Acantilado
B.S., San Diego State University 1993

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 2002

Authors: Neil John P. Acantilado

Christopher P. Acantilado

Approved by: J. Bret Michael
Thesis Advisor

Richard Riehle
Second Reader

Valdis Berzins, Chairman
Software Engineering Curriculum

Chris Eagle, Chairman
Department of Computer Science

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Fault-injection techniques can be used to methodically assess the degree of fault
tolerance afforded by a system. In this thesis, we introduce a Java-based, semi-automatic
fault-injection test harness, called Software Fault Injection Mechanized Prototype
Lightweight Engine (SIMPLE). SIMPLE employs a state-based fault injection approach
designed to validate test suites. It also can assist developers to assess properties of a
system such as robustness, reliability, and performance. Furthermore, SIMPLE employs
fault acceleration to test a system’s fault-tolerant capabilities. We present an object-
oriented analysis of the system and several case studies, using software fault injection on

specific, targeted systems, to assess SIMPLE’s effectiveness.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

II.

I11.

Iv.

TABLE OF CONTENTS

INTRODUCTION ...uuiiiisiiiisnrecssneccsssnccssseecssssssssssesssssesssssssssssssssssssssssssssssssssssssns 1
A. PROBLEM STATEMENTiiiniiinnniiinsnicnseecissnescsssesssssesssssscssssscssases 1
B. RESEARCH ISSUESuuuiiiiiiiitiiisnticnnnicsnnecssnessssessssesssssessssssssssssssssases 2
1. Identifying SWEFI Impactccceeeriiiiiiiiiisnnnnnnniicccssssssnneenencccsssnns 2

2. Java Programming Languageccceeeeeiiivvnnnneeeccccsssssnnnnseneccsssnns 2

3. Identifying MetricCsueeeeereiciiiissssnnereeecccssssssnssnnncccsssssssnsssssnscssssenes 2

4. Selecting a Methodologyuueeeeeeiiciciivivnnneneiiicississssnnneneecccsssssssnnnnes 3

5. Faults MOdelSuueeeiueiiiiiinneeiiiinnneencssnneeccssnneencssnseescssssseessssssseees 3

6. Evaluating SIMPLEcccoiiiiinnnnnnniiiiciiiiisssnnnniiccsssssssnnssssssscssssnns 3

C. RESULTS AND CONCLUSIONS.ccicinttenrneinsnecsssnescsssescsssesssssscsssscssases 3
SOFTWARE FAULT INJECTION ...cccovvtiinneicssnicssunecssneecsssesssasessssessssssscssssscsns 5
A. PURPOSEuuuiiitiiiieinistiinnneicsseecssescssssscssssesssssessssssssssssssssssssssssssssssssssass 5
B. BENEFITS....ccooiiiiiiiiiitiinsetinseeicssescsssescsssnscssssecnns w5
1. Fault AccCeleration........uueeeeeeiciiiiiivsnneeiiiccissssssnnnnneecccssssssnnsssssssssssnns 5

2. COTS TeStING ..ccevvnnnnnnrrriicccisssssssnnrerencccsssns 5

3. Increases Test COVEragecccuvvvvvunnrrrrricisssssssnnnerencccssssssssssssssssssssens 6

4. Sensitivity ANALYSIS c.ccccciciiiiiivnnniiiiicisiiiissnneniiicccsssssssnseneeescsssssssnnnnes 6

C. LIMITATIONS cuuiiiiiiiiiiniicsnrecssneecssnesssssesssssessssssscsssssssssssssssssssssssssssssssssses 6
D. SWEIL TESTINGcccioviiiiriiiirnnicssnnicssneecsssnecssssecssssssssssssssssssssssssssssssssssscses 7
1. Code MULAtION ..cceeernneeereiiineeicissneencsssneesesssseescssssseescsssssesscsssssessenss 7

2. Data Mutation......cccoovvvvmeeeieicicisssssnneenicccsssssssnsssssnsssssssssssssssssssssssssns 7

E. SWFI TECHNIQUESuuiiiiriiiiriiinsnnncssneicssneccsseecsssessssessssssssssssscsssssns 8
1. NT1Y LAY TS0) 2N 8

2. Meta-0bject ProtocColeeiieceiiiivnnneeeicccsssssssnnnnnenccssssssnsssssnscsssssenes 8

3. %A 521 1] 1 1) P 9

4. Perturbation Functions.........cccooeeeeiiiciiiiissnnnnneicccsssssssnnneenesccssssenes 9

5. Interface MUtation........cceeecieeeiiirineeicissneencsssneeccsssnneescssnseescsssnseees 9

6. AsSSertion VIOlationeeeeeeieeeeiciinneencnsnneencnssneencsssnneescsssnseescsssnne 10

7. Messaging Oriented Middleware (MOM)cuueeeereeicccssscsnneenencees 10
METRICS criiiiiiiiirneiisnticsstscssstecsssnecsssnsessssssssssessases 13
A. SOFTWARE METRICSccooiiiiniiiirniiissneicssnnecsssnecsssesssssescssssssssssscsssses 13
1. SWET MELEICS.ccceieessrneercssssnnencisssneencsssneescsssaneescsssaseescssssseesesssssesssnss 13

a. Fault Coverage.......eeecoeissnnnnneeenniocsssssssannesenssssssssssnnnns 13

b. COAC COVOIAGEO.anaanoonnnnnnnnnnnerisisssssssnsnrssssssssssssssssssssssssssans 13

c TeSt AACGUACY au..nnnnnnnnnnnnnnneeeiieiisisssrnnnnneessssssssssssssssssssssssans 14

d. Sensitivity Analysis via the PIE modeluuueeeeeee.... 14

ISSUES AND CHALLENGEScciiniiiiiinniiinseinisetiiseessssescsssescsssescssssscsssnes 15
A. INSTRUMENTATION/OVERHEAD......ccciiiiinniiinninniicsssnnnicssssnssnssssanns 15
B. COMPILE TIME VS. RUN TIME........ccceovurriserinsrnricssnercssnescssaeecsanecssnnes 15
C. LATENT FAULTS . ..cciiinttiitiinnnticsneecsssnecssssecssssesssssesssssnssssssssssssssssssssssns 16
D. FAULT SIMULATION ...iiinniicnnneicssencsssnecssssesssssesssssessssssscssssssssssessses 16
E. FAULT PROPAGATION....uccoiuiiirnricssnnecsseecsssesssssesssssescssssscssssssssssscssns 16

VI

VIL

RELATED RESEARCHcoottiiitiininienineensneeeinneessneesssessssssssssssssssssssssssessssses 19

A. SWET TOOLS.....uutiiitiiiittiiiseiiiseesisstecsssescssssssssssssssssesssssesssssssssssssssssss 19

B. FERRARI ..cuuuiiiiiiiitttiittiistticsnescssescsssnscssssesssssessssssssssssssssssssssssssssssssssns 19

C. XCEPTION uuuciiiuriiirnneiisnnisssneccsssessssesssssesssssessssssesssssssssssssssssssssssssssssssssns 19

D. GOOFL.....iiiiiinnriinisnnnneeinssnneeesssssneescsssssesssssssssesssssssassssssssaesssssasassssssase 20

E. DOCTOR . utteeictttiicinteencinnttencsnntesscssstesssssssessssssssassssssssasssssssaassssssss 20

F. FAILURE SIMULATION TOOL (FST) ccocvveeeerseeesssneicsneccssneccsneecsanecnns 21

G. 0 N TR 22

H. IDEAS FOR SWFI DEVELOPMENTiiinniiineeinssenicssseccssseecssaeecnns 22

SIMPLE — DESIGN AND IMPLEMENTATION......cccovvtinnnenicsnencsneccssneccsnnens 23

A. INTRODUCTION ...cuciiiuiiiinneiissneicssanccsssnecssssscssssessssssssssssssssssssssssssssasssssns 23

B. ACTIVITY AND CLASS DIAGRAMSiiiveriirnencssneecssseccsssnecssasecnns 24

C. FAULTS IN SIMPLE......ccoovvtiiiiiiinnrecsnnecssneecssnecssssessssesssssesssssscssssscsses 25

1. 11T (R) 26

2. Fault Attributesccoeieiiiniieeiiiinneeicniineecnnnnneeecnsnneescsssseescssssseees 27

3. Fault TrigEers c.ccccccerrvvvrsnnnreriiccisisssssnnnnneneccsssssssnssssenssssssssssssssssnsscs 29

D. JAVA TECHNOLOGIESuiiinurinrnriisneecssnecsseesssssesssssescssssscssssscnns 29

1. Candidate Technologies......ccccovvueerreeicciisssssnnnrercccsssssssnssreenccssssnnns 30

2. Selected TeChnologIesuuuueeeeriiiiiiiiissrnnerniicciissssssnnennnecccsssssnnnnns 34

E. STATE AND SEQUENCE DIAGRAMSiiiveicisneicssnescssnescssneecssnnes 37

F. ISSUES, CAVEATS, LIMITATIONS, AND LESSONS-LEARNED......39

1. Java Virtual Machine (JVM) Compatibility.........cccccceeevvvnnnnnnnnncee 39

2. Requires Compilation with Debug Optionuueeeeivneeeicinnnenn. 39

3. How to Handle Fault-Injection Time?cccoovvvvueeeeriicciisccnneeeeences 39

4. Pre-instrumentation — A Necessary Evil.......iiiiiicciiiivsnnnnnences 42

5. Pre-instrumentation Behavior is Inconsistentcccoceeerecnnnnen. 42

6. Requires Source Code and Strong Familiarity Thereof................ 43

7. Heisenberg’s Uncertainty Principleccccoevvvvunnneiiiicciiscssnnnnenences 44

8. Affect of Compiler-Induced Optimizationsccooceeerecsneeerccnnne 46

9. Software Fault Evaluation is Coarse-Grained........cccccceeererunnneenenee 46

10. Interaction with Other Software Toolsccceeevuueeiccinneercssnnnnn 47

G. FUTURE ENHANCEMENTSccociviiinniiinsnnecnsnicnssnescsssescsssescssssscssssecsns 48
1. Using Perturbation Functions to Improve Variable-Mutation

Performance.......eeeceeeeecinneeeicsinnneeecnnnneeccssnneeeecssneescssssseesessssseees 48

2. Extending the Fault Range of SIMPLE...........cccouvueeriiinneencsnnnene 49

3. Mutating Collections and ATrays.........cccccceeeessnnneeeeccccsssssnsseeneecces 50

4. Data Collection in SIMPLE..........uuiiiiiiiiiiiivvnnnnneiecccsssssssnnseeneecces 50

5. Developing a GUI for SIMPLEccciiiiiiiinnnnnnnninccccsssssnnnennencees 50

6. Further Investigation of Java Technologies..............cccevuueerenunnneen. 51

7. Further Investigation of Open-Source Fault-Injection Tools 51

H. PLAN TO THROW ONE AWAYcciirvueiirsnecssnecssnesssssescsssessssssscsasscssns 52

CASE STUDIES ...coooiiiiinniiiisneecssnnecsseecsssecssssesss 53

A. INTRODUCTION ...cuciiiuiiiisneicssnescssanecsssnscssssecsssssssssssssssssssssssssssssssssssssssns 53

B. CASE STUDY I: USING SIMPLE TO VERIFY TEST CASES 53

1. CSMA/CD Software Descriptionccccccccvveeeereecccsssssssnnneneecccsssens 54

2. JUNIt Frameworkuceeieieeiiinieniiinnieecnnnneencnnnneeecnsnneescsssnsenes 54

3. CSMA/CD TeSt SUILES ceeeeeeeerrsirsnnrrerecccsssssssnnssrenescssssssssssssssssssssssnns 55
4. CSMA/CD Test CaSES.ceereiierrsrsrssnnrrernecsssssssnsssssssssssssssssssssssssssssssns 57
5. Employing Fault-INjectioneeeeeivveeeicissnneeccssneecccssneenccsnnenes 61
6. L 2] 1] 1 66
7. L T R) | 66
C. CASE STUDY II: UNCOVERING SOFTWARE ANOMALIES
USING SIMPLE.......uuutiiiiiinniiisnnicssneccsssnecssssesssssssssssssssssssssssssssssssssssssssns 67
1. The Airline Reservation System (ARS) Software Description...... 68
2. Testing the ARS Exception-Handling Capabilitiescccuuuu.ee.. 69
3. Assessing GUI Performance via Fault-Acceleration 76
4. L T R 1) | 79
D. CASE STUDY III: INCREASING TEST COVERAGEccceereenunnee 80
1. COVErage MELriCSuuueeeeeiiccissssssnnnrrenicccssssssnsssrenssssssssssssssssssssssssnes 80
2. 6 4 1 N 81
3. Using Gretel with SIMPLEiiiiiiiiiiininnnnnnnneeccccsssssnnsseneecces 81
4. Assessing SIMPLE COVErageeeeeeeccccssssssnnenneecccsssssnsssssnneses 83
5. L 2] 1] (T 83
6. DIESCUSSION c.uueeeriiiiiiiiiiiissnnrtriticcsssssssnnsertessssssssssssssssssssssssssssssssssssses 87
CONCLUSION c.cuuiiiirneicssneecssanccsssnecssssssssssessassssssssss 89
LIST OF REFERENCESuuuiiiiiiniinnneiinneicnseecnsseessssescsssesssssssssssescssssscsssss 91
APPENDIX A — SIMPLE UML DIAGRAMSuuuutiiiiinnniiinnsnniicssssnssscssssssssssssssssssssssnns 95
APPENDIX B — FAULT SPECIFICATION GRAMMAR.......cccicetirniiicssssuniicsssnssacsnes 105
APPENDIX C — CASE STUDY UML DIAGRAMS......viiiiiinnnricssssnniicssssasssssssnssssssns 109
APPENDIX D — CASE STUDY FAULT CONFIGURATION FILESccccceeeueereene 113
D-1 CSMA/CD UNIT-TEST FAULT CONFIGURATION FILE (CASE
STUDY D) ueuueiiiriiiirneicssnneciseecsssneessssnscsssescssssscssssssssssssssssessssssssssssssssssssssns 114
D-2 ARS FAULT CONFIGURATION FILE (CASE STUDY II, PART 1)....... 117
D-3 ARS FAULT CONFIGURATION FILE (CASE STUDY II, PART 2)...... 118
D-4 GRETEL/ARS FAULT CONFIGURATION FILE (CASE STUDY III)...119
APPENDIX E — SIMPLE SOURCE CODAE.........iiiiinnniiininsnnnicssssnnnicssssassssssssssssssses 121
E-1 BUILD.XML ..ccciiivuriinseeiisnecsssnescsssescsssnscsssescsssscsssssssssssses 122
E-2 DOM_UTILJAVA .uutiiitiiiniicnneecsneccsssesssssssssssessssssssssssssssssssssssssssssssssns 124
E-3 EVENTTHREAD.JAVA......iiiiinruricssneiinsencsseecssssesssssesssssescsssscssssscses 127
E-4 FAULT.JAVA ..coiiiiitiitticnneicssescnsnecssssesssssssssssessssssssssssssssssssssssssssssssssns 136
E-5 FAULTMANAGER.JAVAuuiiiiiinniinnnntiinsnnissseissssessssescsssescssssscsssssssns 143
E-6 FAULTPARSER.JAVAcoiiiiitiiinniicnnnnicnnnesssnsessssssssssssssesssssssssssssses 149
E-7 LOCATIONFAULTTRIGGER.JAVAcciiiinnuiiiininnniicssssnsiicsssssssssssssssnes 157
E-8 OBJECTFAULT.JAV Accootiiirtiicssnnicssneccssnessssesssssessssssssssssssssssscsssssssss 159
E-9 OBJECTFIELDFAULT.JAVA ...ovviiiiiinniiinsnnniicssssssiissssssssssssssssssssssssssses 162
E-10 OBJECTLOCALFAULT.JAVA ...uuiiiiiiiniiiinnnnniicsssnsiscsssssssssssssssssssssssssses 166
E-11 PRIMITIVEFAULT.JAVA ..ccciiiiiiiiinnnnniicsssnsiicsssssssssssssssssssssssssssssssssssss 168
E-12 PRIMITIVEFIELDFAULT.JAVA ...convniiiiinnnniiinnnnniicssssnssssssssssssssssssssnes 170
E-13 PRIMITIVELOCALFAULT.JAVAuuuiiiiiiniiinnnnnniicsssnsisessssssssssssnssses 174

X

E-14 SIMPLEHARNESS.JAVAooiiiniininrinniiennnensnnesssseesssessssssssssssesssns 176

E-15 SIMPLEHELPER.JAVA.......uuiiiniininrinnnninnnnenssneessneessssesssssssssssesnns 181
E-16 SIMPLEREPOSITORY.JAVAirinniinnnennnnennnneessaneessseesssssesnns 187
E-17 SIMPLETREK.JAVA......uiiniiitiinnniennnninnsnniensnnesssneesssssssssesssssasssssssssns 189
E-18 STARTTIME.JAVAuiriinnrinnnienssnneensnniessnnesssseesssssssssssssssssssssssesssns 194
E-19 STATEMENTHELPER.JAVAiinniinniennnneesnnneessneesssssesssssessnns 195
E-20 STREAMREDIRECTTHREAD.JAVAiiinrinnienssneessneecsneecnns 201
E-21 UPDATETIME.JAVAcuintrinnniennnrennnneessnnesssnesssssssssssssssssssssssesssns 203
E-22 UTIL.JAVA ...coiieiiienniennneecnnnessnnessssseessssessssessssssssssssssssssssssssssssssssssns 204
E-23 UTILITYASPECT.JAVAuurinrrennnrennnnensnnesssnneessseesssessssssesssssessnns 207
INITIAL DISTRIBUTION LISTcuooiiuiiiiiienineenineenssneesssnnesssseesssnsessssessssesssssesssnnes 209

LIST OF FIGURES

Figure 1. Sample Fault INpUtc.oooiiiiiiiiiiee e 26
Figure 2. VerboseMetaobject CLasscooueiiriiiiiiiiiiiiieiiccceee e 31
Figure 3. EXampPle AVICE ...coouuiiiiiiiiiiiiiiiiieeeite ettt e 32
Figure 4. Arbitrary Code SEZMENtoeeiiiiiiiiiiiiiiieeeiiiie et et e e e e e e e e 36
Figure 5. Application that is Activated by the RUN Button.............cccooveeeviiiiniiiinnicennneen. 41
Figure 6. Code SMIPPET ..cceeuuviiieeiiiiiieeeiieee ettt ettt e ettt e e ettt e e et e e s eataeeesentaeeesennaeeas 45
Figure 7. Perturbation FUNCLIONccooiiiiiiiiiiiiiicece e 48
Figure 8. JUNIt GUIL.....cooiiiiiiiiiiiiee ettt e e 55
Figure 9. SimpleTest — Tests All Passedccceeeviiiiniiiiiiiiiiiiieeiceiee e 61
Figure 10. SimpleTest — Tests All Failedcccooviiiiiiiiiiiiiiiicciecececee e 66
Figure 11. ARS Source Code SNIPPetcceeiuiiieiiiiiiieeiiiie ettt e e e e 70
Figure 12. Flight Manager GUIcccoiiiiiiiiiiiiiiiie et 71
Figure 13. Travel Agent Reservation GUI with Reservation Dialog BoXcc.ccccevvuveennee. 72
Figure 14. The Flight Manager GUI Session with Injected Fault.............cccccceeviinniinnnnen. 73
Figure 15. A Travel Agent Reservation GUI Session with Injected Fault...................c........ 74
Figure 16. Reservations in the Travel Agent Reservation GUL.ccccceeviiiniiciniieennnen. 75
Figure 17. Software Bug in the Travel Agent Reservation GUI Code...........ccccocuveeruieennnen. 75
Figure 18. Template FiXcoiiiiiiiiiiiiiieie et 76
Figure 19. The Travel Agent Reservation GULL.........ccocceiiiiiiiiiiiiniiiiiieieccccceen 77
Figure 20. Partial Listing of the Insert Method...........c.ccccoiiiiiiiiiiiiiiiin 77
Figure 21. A "Frozen" Travel Agent Reservation GUI..........cccccceeiiiiiiniiiiniiiiniiciicee, 78
Figure 22. Instrumenting With Gretel..........ooviiiiiiiiiiiiiiiiiiiiccee e 82
Figure 23. Querying All Flight Data in ARSccooiiiiiiiii e 82
Figure 24. Session 1 Coverage ReSUILSccoouiiiiiiiiiiiiiiiiiiicccieeee e 84
Figure 25. Session 2 Coverage ReSUILScoocuiiiiiiiiiiiiiiiiiiiicee e 86
Figure A-1. SIMPLE Activity Diagramcccceeevuiiiniieiniieeiiieeeiiee et 95
Figure A- 2. High-level Class Diagram of SIMPLE Componentscccccceeevveeinieennnnnen. 96
Figure A-3. Detailed Class Diagram of SIMPLE Components..........ccccceeevvveerniveennieennnneen. 97
Figure A-4. General State Diagram of SIMPLE Processes..........cccocveeviiieiiieeniiecnnieenen. 98
Figure A-5. High-level Sequence Diagram of SIMPLE Process........cccoceveviiieniieeniiieennnen. 99
Figure A-6. Sequence Diagrams of Faults Being Parsedcccooeiiiiiiiniiinicinicenn 100
Figure A-7. Sequence Diagram of Classes Being Preparedcccceevviiiiniiinieinnieennn 101
Figure A-8. Sequence Diagram of Fault Triggers Being Served........cccccceeviviiniiiinieannnn. 102
Figure A- 9. State Diagram of SUT Instrumentationcceceeervveeinieeenieeeniee e 103
Figure C- 1. Class Diagram for the CSMA/CD Simulation Softwarecccecvveenneeennn. 109
Figure C- 2. JUnit Framework Class Diagramccocceeviiieiniiiiiiiiiiiniieeieeeneeeseee e 110
Figure C- 3. Test Suite Class DIa@ramsc..ceeeriiiiieeriiiiieeeiiiieeeeriiieeeesiieeeeeieeee e 111
Figure C- 4. Class Diagram for the ARS Systemcccccviiiiiiiiiiiiiiiiiieeiiee e 112

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

LIST OF TABLES

Table 1. Test Suite DESCIIPLIONSeeeeiuiiireeiiiiieeeiiiieeeeriieeeeeeiteeeeesnbeeeeesebraeeeesnnreeeeennneeeeas 56
Table 2. "NetworkSimulationMainTest" Test Casesuvveeeeeieieiiiiiiiiieeeeeeeccciiiieeeee e e, 57
Table 3. "PacketQueueTest” TeSt Cases.......uuuuuiiieeeiiiiiiiiiiieeeeeeeeeiiireeeeeeeeeeeeerareeeeeeeeeeeaanns 58
Table 4. "StationTest" TSt CaSCS ...cceiiiiiiiiiiiiiiieee e e eecitreee e e e e eeee e e e e e e e eeaarrreeeeeeeeeaaans 59
Table 5. "NetworkEventManagerTest" Test Cases........ccccuviierriiiieeiiiiiieeeeiiiieeeeiieee e 60
Table 6. "NetworkTest" TeSt CaSeSccccurriiiiieeeeiiiiiiiieeeeeeeeeeciie e e e e e e e e e e e e e e e e eaeaaeees 60
Table 7. "NetworkSimulationMainTest" Faults...........ccccceiiiiiiiiiiiiiiiiicceeceeee e, 62
Table 8. "PacketQueueTest" FAults..........cccvviiiiiiiiiiiiiiieeee e 63
Table 9. "StationTest" Faultsooiiiiiiiiiiiiiiieece e e 64
Table 10. "NetworkEventManagerTest" Faults..........ccccoooiiiiiiiiiiiiiiiiiicciee e, 64
Table 11. "NetWorkTest" FaultS...........ccooiiiiiiiiiiiie e e e 65

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

X1V

ACKNOWLEDGMENTS

Our sincerest appreciation to

Dr. J. Bret Michael & Mr. Richard Riehle

for their guidance and support in this endeavor.

Our deepest gratitude to

Nancy W. Chang, M.D.

for her diligence in proof-reading our thesis and
other similar work. During these past few years, we listened to
and incorporated many of her comments and suggestions.
We became better writers for it.

And, thanks to

Mom & Dad

for their love and support.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

I. INTRODUCTION

A. PROBLEM STATEMENT

System applications play a major role in today's society. Many commercial
industries and government agencies are developing critical systems to satisfy people’s
everyday needs. Such systems include power management, medical devices monitoring,
and transportation scheduling. For example, a simple automatic coffeemaker can be
categorized as a critical system. Unfortunately, unexpected system failures can have
serious consequences, such as loss of life or property, damage to the environment, or

denial of service.

Emphasis has traditionally been placed on planning and executing testing
activities late in the software-development process. However, unforeseen catastrophic
disasters caused by latent software errors cannot with certainty be anticipated [11]. On
way to safeguard against the effects of software defects is to design fault tolerance into

systems.

Automatic fault-injection tools, techniques and methodologies exist for assessing
the robustness and reliability of systems [20]. For example, researchers at Cigital
(formerly known as Reliable Software Technologies) have developed a tool that
programmatically invokes system-level exceptions used to evaluate the effects of
Windows NT failures in an application [1]. Results gathered from these tests assist
developers in strengthening exception handling, identifying essential pre-condition

assertions, and widening software test coverage of the system.

We built a semi-automatic fault-injection test harness geared towards testing
system applications. In order to realize automated testing, we implemented our fault-
injection engine to be non-destructive to the application source, with the realization that

some byte-code instrumentation of the Software-Under-Test (SUT) may be necessary.

The purpose for this research is to investigate how a fault injection test harness

can be designed to accommodate the software test process for safety-critical applications.

B. RESEARCH ISSUES

Key research issues are summarized below.

1. Identifying SWFI Impact

The intrusiveness of software fault injection (SWFI) techniques can adversely
affect software behavior. For instance, both performance and resource overhead can be
incurred during SWFI testing. We discuss the impact that SWFI can have on the SUT.

2. Java Programming Language

Like many commercial industries, the DOD is turning to Java to develop many of
its mission-critical systems (e.g., DIICOE!). Also, many of these systems consist of
COTS components, written in Java, used to support Joint operations.? For instance,
approximately 50% of the DIICOE kernel is comprised of Java technology alone [2].
Major projects at our facility3 use DIICOE as the underlying kernel for many of its
command and control systems under development (e.g., GCCS-M*%). For these reasons,
this study will focus on developing a SWFI tool that is geared towards Java-based
systems. In addition, existing Java technologies will facilitate our fault-injection tool
development.

3. Identifying Metrics

Many existing SWFI tools compute metrics [1, 16, 17, 18, 21, 22, 25, 26, 28, 32].
For example, Fault Tolerance and Performance Evaluator (FTAPE) computes the error
detection rate as the ratio of detected errors to injected faults; error recovery is measured
as the number of system crashes; and error recovery is measured by performance

degradation [32].

I Defense Infrastructure Information/Common Operating Environment (DIICOE) is an architecture
that provides a common runtime environment for Command & Control, Communications, Computers, and
Intelligence (C4I) systems

2 Joint Operations is the unification of actions between the Armed Forces of the United States. For
more information, see website available at http:/www.dtic.mil/doctrine/jfe_briefing_modules.htm, October
2002.

3 By facility, we mean our place of work at the Space And Naval Warfare Systems Center in San
Diego (SSCSD). For more information see website available at http://www.spawar.navy.mil/, August
2002.

4 Global Command And Control System Maritime (GCCS-M) provides C4I services to the fleet giving
allied maritime forces the ability to operate in a network-centric environment. See website available at
http://jite.thu.disa.mil/gccsiop/interfaces/gcesm.htm, May 2002.

2

Since SWFI plays a significant role in software test coverage (a metric for test
adequacy of test schemes), our case study discusses how SIMPLE can increase test
coverage.

4. Selecting a Methodology

We selected candidate fault models, attributes and methodologies, and applied
them in concert with our SWFTI tool as a means for testing the effectiveness of SIMPLE.

5. Faults Models

Many SWFI tools employ built-in fault models to be used to assess the robustness
of the SUT. Likewise, SIMPLE has its own set of faults to inject into a targeted system:
exceptions, data mutation, time delays, and memory leaks.

6. Evaluating SIMPLE

We experimented with SIMPLE via a case-study approach. Each case study
includes a discussion on relevant tool features, associated fault models, pertinent test
results, and lessons learned (covering the implications and limitations of the test harness).
We also discuss the conclusions reached and experiences gained as a result of this study.

C. RESULTS AND CONCLUSIONS

After thorough research, we were able to construct a SWFI test-harness for Java-
based systems. Ideas were borrowed from existing SWFI tools and then incorporated
into our SWFI prototype. Our development was facilitated through use of available
open-source Java technologies, such as Sun’s Java Platform Debugger Architecture

(JPDA) and Compaq’s JTrek APIs.

Even in its early form, our prototype proved to be very promising as depicted in

our case studies. See Chapter VII.

THIS PAGE INTENTIONALLY LEFT BLANK

II. SOFTWARE FAULT INJECTION

A. PURPOSE

Rather than exhaustively search for faults, one can directly inject simulated faults
into a system and then analyze the effects of injected faults. SWFI dynamically
demonstrates whether the system tolerates improbable inputs or outputs, such as the
database overflow error suffered by the Aegis Missile Cruiser, USS Yorktown: the
database error caused the jet propulsion system to shutdown, thus, leaving ship crippled
for hours [4].

B. BENEFITS

Unexpected system failures stemming from inadequate testing practices can have
serious implications and consequences for safety-critical systems (e.g., Therac 25 [5],
Ariane 5 Flight 501 [66]) [3]. Thus, organizations should be fully aware of the
advantages and limitations of SWFI in detecting software errors.

1. Fault Acceleration

One advantage SWFI provides is that it encourages fault acceleration. Rather
than investing time testing for failure occurrences in a system, faults are intentionally
injected in a desirable time frame [7]. Then their effects are analyzed. This process is
known as fault acceleration.

2. COTS Testing

Critical systems increasingly utilize Commercial-Off-The-Shelf (COTS) software
during development. Flaws in these systems can create intolerable losses. Unfortunately,
COTS makes it increasingly difficult to test underlying features, such as error/exception

handling routines, due to source code unavailability.

Fortunately, organizations are now required to openly provide APIs to their
customers [8]. In addition, more open-source software applications exist. As a result,
researchers are using fault injection as a means to effectively test COTS software. For
example, developers inject faults into the underlying operating system or processing

hardware of the system [9].

Furthermore, if application source is unavailable, we can conduct COTS testing
with the traditional, black-box testing approach using SWFI. In other words, SWFI will
inject faults into the software’s known entry points (i.e., interfaces, public methods).

3. Increases Test Coverage

In a recent study, researchers have determined that fault injection increases test
coverage of the software [10]. Fault injection forcefully executes difficult to reach paths
in the program. For example, fault injection techniques can violate explicit assertion
statements. This allows for the forceful execution of hard to reach areas of the program.
According to a recent case study, SWFI increased test coverage by as much as 90 percent
[10].

4. Sensitivity Analysis

Sensitivity Analysis predicts where faults will hide, especially from test cases. In
essence, Sensitivity Analysis helps to measure software testability. Sensitivity analysis
involves three separate processes: execution, infection, and propagation analysis. To
perform the latter two analyses, fault injection techniques must be used. Infection and
propagation analysis require mutation of software and its subsequent internal states
created during run-time. Hence, researchers are employing SWFI effectively perform
Sensitivity Analysis [30, 31]. Sensitivity Analysis is briefly discussed in Chapter III.

C. LIMITATIONS

Although SWFI provides benefits towards software testing, there exist limitations.
For example, some SWFI tools require code instrumentation [28]. This may cause
unnecessary overhead to the system’s performance. As a result, code that is running
during testing will not be necessarily the same code running at a realistic environment.
Other limitations include the inability for SWFI to mimic fault latency and fault
propagation. Therefore, software developers and testers should not rely solely on SWFI

for accurate testing. See Chapter IV for more discussion on SWFI limitations.

Furthermore, SWFI focuses on determining how software behaves in the presence
of a range of faults produced in a non-ideal environment [3]. It is incapable of fully

assessing software correctness as it relates to compliancy to requirements. Hence, SWFI

is best served as a compliment, rather than a replacement, to traditional software testing

techniques.

As Dr. Bret Michael, Professor of the Naval Postgraduate School, states, “Testing
is never complete because there are more possible states that a system can enter that you
can possibly test for. You need multiple approaches to assessing the pedigree of the
software. You don’t want to put all your eggs in any one of those baskets of techniques.
You need to have cross-cutting techniques that are feasible approaches [29].”

D. SWFI TESTING

Mutation testing, a common SWFI test, detects the differences between the
application’s intended behaviors and its newly changed behaviors. It analyzes how the
resultant changes affect the application’s software testability.” Typical mutation tests
include direct application of fault injections to existing source code (referred as “code
mutation”) or dynamic insertion during system execution (referred as “data mutation”).
The following subsections describe the basics of code and data mutation.

1. Code Mutation

Code mutation is the process of directly changing existing source code. Its
purpose is to change the state of the executing program. The modified code is termed a
mutant. As a simple example, consider the following code statement, a=a + 1. Through
SWEFI, this statement can be changed to a=a+a+ 1 ora=a + 10. There are different
levels to code mutation [3]. The example just described is classified as a first-order
mutant. A second order mutant is achieved by mutating a first order mutant. A third
order mutant requires the mutation of a second order mutant, and so forth.

2. Data Mutation

Data mutation modifies the program’s internal state (e.g., memory, time,
variables) at runtime. Overriding programmer-defined variables or the data transferred
via function calls causes this modification. Data mutation is the preferred method of
mutation testing, mainly because we are largely concerned with internal data states that

cause failures [11].

5 Testability is a software characteristic that measures its ability to detect faults during test time.

7

E. SWFI TECHNIQUES

Many researchers and engineers have developed novel SWFI mechanisms. This
section briefly describes some of their approaches.

1. Software Trap

Software traps are instructions that can be placed anywhere in the target program.
When detected by a processor, the software trap halts execution of the current process.
Software traps are triggered either by program execution or by a timer. They are

particularly useful for injecting CPU, memory, and bus type of faults [20].

Software traps can be used to trigger faults via fault injection. For example,
FERRARI, a SWFI tool, uses software traps to invoke faults physically into the system
via SWFI [28]. Specifically, FERRARI sets a trace bit (i.e., software trap) into the target
program process control block. When the target program process reaches the trace bit, a
context switch is made to the fault injection process. The fault injection process then
alters the program state by executing a sequence of system calls.

2. Meta-object Protocol

The Java programming language supports a Reflection API that enables the ability
of a program to introspect its own behavior.® In other words, the program will be able to
discover information about any Java class, including its set of methods and corresponding

parameterized types.

Java’s Reflection API has been extended to allow for a program to alter its own
behavior. This extension is commonly known as behavioral reflection [12]. Using both
a meta-object’ protocol [13, 14] and behavioral reflection can dynamically capture an
operation (or method invocation), alter it, and execute it. Technically speaking, the run-
time system invokes a meta-object method that is associated with a particular operation.
The logic of the meta-object method is pre-instrumented by the developer to reflect a
changed behavior of an operation. For example, a meta-object method, subtract, is
executed whenever an add function is called. This capability makes reflection a well-

suited mechanism for SWFI [14].

6 Reflection enables the programmatic identification of class and object information during run-time.

7 Metaobjects encapsulates the behavior adaptations of a component.

8

3. Wrapper

A wrapper encases a component and the operations that it provides. Specifically,
the wrapper captures calls made to the encased component or shields the system from

certain component outputs. Wrappers are heavily used to test COTS components [15].

Wrappers can serve as a mechanism for fault injection. In particular, these
components can produce exceptions and error conditions when particular system
functions are invoked during execution. For example, a wrapper component can intercept
a system call and then change intended behavior by mutating its inputs. The Fault
Simulation Tool (FST) uses this approach to evaluate the robustness of the Windows NT
platform. The tool utilizes Win32 dynamic linked libraries (DLL) that are wrapped to
support the corruption of DLL input data on demand. Refer to [1] for more details
concerning the FST tool.

4. Perturbation Functions

Perturbation (or perturb) functions are used to forcefully override the current
internal value of a variable, thereby simulating errors. For example, a random function
generator can be used as a perturb function. Thus, the statement, a = a + 1, can be

changed to a = rand(a) + 1.

Unfortunately, perturbation functions are usually applied at a source code level
(i.e., the function is compiled into the targeted system). To avoid being intrusive to the
application source, these functions can be applied at the byte-code level. For example, a
perturb function, f7ipBir8, which can exist in a separate program, but must be linked with
the targeted program’s executable.

5. Interface Mutation

System of systems is a composition of individual systems, which are organized to
achieve a common goal (e.g. airports which consist of aircraft, terminals, runways, air
traffic controls and baggage handling systems). Unfortunately, such systems are prone
to errors that propagate across system boundaries. For example, data that is corrupt in the

message traffic may cause a system to perform an inadvertent system operation. Hence,

8 A flipbit function simply flips a bit from 0 to 1 and vice versa. Flipping bits encourages simulation
of many flaws (e.g., data corruptions).

9

proper interface testing is required to see whether systems could handle receiving

corrupted data.

A technique designed to test at the system of systems level is Interface Mutation
[19]. Like mutation testing, this method is designed to create mutants by making changes
to entities. However, unlike mutation testing, only those entities that reside on interfaces
between components are mutated. This helps to limit the number of mutants to execute
and analyze. The entities between interfaces include: function calls, function return
values, and global data shared by two or more functions. Thus, mutating entities between
interfaces can stimulate errors. For example, a function directly relating to two

components can be called with either a missing or incorrect parameter.

For a list of other potential errors injected at the interface level, see [33].

6. Assertion Violation

Assertions are boolean expression constructs that specify a program's expected
behavior. Examples of such constructs include pre-conditions, post-conditions, and
class-invariants. Specifically, an assertion about the program's current state must be true
before, during, and after a function is invoked. Thus, certain boolean conditions must be
satisfied before an operation can be carried out. A true assertion statement ensures that a

function is executed correctly; whereas, a false assertion statement guarantees a fault.

Researchers in [10] are using assertions as a technique for injecting software
faults. To simulate a fault, an assertion is made false during program execution in an
automatic fashion. This allows for the modeling and simulation of faults. Examples of
such faults include assignment, function, and initialization faults. Furthermore, invalid
assertions can cause a chain of other assertion violations in the code. In effect, this
increases test coverage by exercising the assert mechanisms.

7. Messaging Oriented Middleware (MOM)

As discussed in the previous section, organizations are integrating their
applications into a single enterprise-wide system. Many of these systems use MOM to

handle the exchange of information (or messages) across a distributed system. For

10

example, existing MOM systems utilizing JMS® or SOAPI0, offer communication

services such as point-to-point and publish-and-subscribe messaging.

Unfortunately, problems can arise when the underlying MOM mechanism starts
to scale up as a result of increasing client connections. Typical problems include:
network bottlenecks, memory consumption, threading contention, data loss, message
congestion, low disk space, and untimely message delivery. Such adverse effects are not
acceptable, especially, for systems having safety- or mission- critical like properties.

Therefore, stress testing against the system is necessary to ensure robustness.

Fortunately, useful SWFI techniques can be employed using basic MOM
constructs. For example, multiple senders (or producers), multiple receivers (or
consumers), or both can be easily instantiated to stress test system load. The system load

potentially causes it to behave differently.

Another form of SWFI-based stress test is the emulation of message congestion.
Developers can implement producers designed to "inject" multiple messages at high
frequency causing adverse effects against the system such as in-memory buffer (or

queue) overflow.

Finally, message corruption is another practical SWFI technique that MOM can
simulate. By using brute-forcing producers to send invalid messages, developers or

testers can assess the system's fault tolerance capabilities (i.e., exception-handling).

9 Java Messaging Service (JMS) is a Java Standard API designed to implement MOM systems.

10 Simple Object Access Protocol (SOAP) is an XML-based web services MOM protocol that
facilitates web servicing.

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

1. METRICS

A. SOFTWARE METRICS

Software metrics are statistical data used to evaluate the properties of the
software. For example, the Lines-Of-Code (LOC) is a commonly used software metric
that measures the size of the software. Another example is the Function Point (FP) Size

Estimation metric. It measures the complexity of the functions used in the software.

Many of these metrics are correlated to the development effort of the software.
However, they are not necessarily correlated to the properties of software systems that are
of interest from a test and evaluation perspective.

1. SWFI Metrics

SWEFI has been used as a means to measure the desired properties of the software
such as vulnerability, robustness, and survivability [9, 23, 24, 25]. One analyzes and
collects error-based metrics during SWFI testing, such as the number of abnormal exits or
the number of system crashes. The following subsections cover some of the metrics that
could be used to quantitatively evaluate results obtained from SWFI testing; other
specialized SWFI metrics are listed in [3].

a. Fault Coverage

A failure-based (or fault-based) strategy as it pertains to fault-injection
attempts to measure the fault-tolerant characteristics of an application. This measurement
is specifically referred to as the fault-coverage metric of the application. Ghosh, Mathur,
and Horgan define fault coverage as “... the percentage of the number of faults tolerated
with respect to that of faults injected [33].” In this scheme, contextually relevant faults
are programmatically injected into the application. In accordance, the tester then
evaluates and records any application responses to the fault. A case study that utilizes a

failure-based fault injection approach is given in [33].

b. Code Coverage

Code coverage is often used as an exit criterion for software testing. In

many cases, testing is deemed to be complete once a threshold coverage value has been

13

met. The number of statements or branches exercised during testing typically delineates
this threshold value. Fault-injection can be used to increase coverage by executing those
“hard-to-reach” software paths [10]. Interestingly enough, the application’s exception-
handling and error-recovery mechanisms are typically the most inaccessible areas to
reach during testing.

c Test Adequacy

To measure the effectiveness of application test cases, the combination of
fault coverage and code coverage metrics forms a two-dimensional metric [33]. This
metric provides an effective fest adequacy measurement. For instance, a low score for
both fault coverage and code coverage yields a poor test-adequacy rating, as does a high
fault-coverage score with a low code-coverage score.

d. Sensitivity Analysis via the PIE model

Sensitivity analysis utilizes fault injection to predict where in the source
code test cases will be incapable of revealing errors [3]. Hence, it also purports to define
a kind of test-adequacy metric. In his PIE model, Voas proposes a sensitivity analysis
approach for deriving various prediction measurements that relate fault-sensitivity to the
software. More specifically, PIE is comprised of three separate analyses known as the
propagation (i.e., determines the likelihood that a data state error propagates to the output
space), infection (i.e., measures the likelihood of corrupted internal states), and execution
analysis (i.e., estimates the likelihood of code execution at each location). Each of these
analyses contributes to a metric that determines the likelihood that faults will be

uncovered within an application during software testing. See [3] for complete details.

14

IV. ISSUES AND CHALLENGES

A. INSTRUMENTATION/OVERHEAD

Common SWFI mechanisms such as perturbation functions require the
modification of the program. Unfortunately, this extra instrumentation causes execution
overhead that will affect system behavior such as performance [16]. Furthermore,
existing SWFI tools require their processes to be executed separately or during the target
system's process. For example, the SWFI tool, FERRARI, requires some context
switches!! between its fault injection process and the target system process. However,
this requirement creates a timing overhead that can also adversely change the behavior of
the SUT. This behavioral effect is commonly known as a Heisenbug!?, software’s
rendition of the Heisenberg Uncertainty Principle.!3 In other words, intrusiveness of
software instrumentation can alter the behavior of the software under test.

B. COMPILE TIME VS. RUN TIME

Software fault injection can be categorized according to when an injection is
performed [20]. For example, a fault injection can occur during compilation or runtime.
Compile-time injection modifies code instructions in the program execution. In contrast,
run-time injection requires a mechanism (i.e., an injector) to inject faults when the
program is running. In addition, the program must be prepared before performing a fault
injection experiment. However, each approach has its advantages and disadvantages, as

discussed below.

Low intrusiveness can be achieved via compile-time injection. In this method, no
control is required to run the fault-injection experiment at run-time. Moreover, no
perturbation is introduced in the SUT during its execution. However, since there is no
control, there is no way to tell whether a fault was activated or has affected the software

under test.

11 Context switch is the process of switching between one process to the kernel and vice versa.

12' The term Heisenbug was originally derived from the Heisenberg Uncertainty Principle.
Heisenbugs are intermittent software faults that are not necessarily guaranteed to produce an error based on
deterministic inputs. More notably, they are often very hard to locate [45].

13 The Heisenberg Uncertainty Principle is the inability to simultaneously measure conjugate
attributes, such as position and momentum, of a subatomic particle.

15

On the contrary, run-time injection can present a high level of intrusiveness; an
extra mechanism is needed to inject faults into the SUT. Furthermore, there must be a
way for the program to invoke or “trigger” the fault to be injected. The downfall of this
method is that it requires instrumentation that will eventually affect the system’s
behavior.

C. LATENT FAULTS

The system's hardware or operational behavior is vulnerable to actual hardware or
software faults that affect memory, clock value, control flow, and so on. Moreover, they
may lie dormant and undetected for hundreds of thousands of hours of operation. For
example, failures in system memory may not be apparent until faults have occurred in the
CPU's circuitry long before. Although, SWFI is ideal in representing memory faults,
SWFI cannot mimic latent faults. Thus, SWFI may fail to capture certain behaviors
caused by latent faults. Proper hardware monitoring can solve this issue. However, this
solution incurs overhead on the SUT.

D. FAULT SIMULATION

Exhaustive testing is impossible to achieve except in trivial cases [27].
Exhaustive testing requires a test suite to test for all possible inputs and states. Similarly,
the approach to inject every fault that targeted system may face is infeasible. This
assumption is due to the fact that the anomaly space of the targeted system can be
infinitely large [6]. Thus, system analysts would have to go through a time-consuming
process of determining faults that are likely to be encountered by the targeted system
during its lifetime. Unfortunately, analysts may accidentally foresee many faults that
lead to failures of much more importance.

E. FAULT PROPAGATION

The test results obtained by SWFI can give a rudimentary assessment of the
robustness of a system. However, results captured from SWFI experiments are observed
and captured at the final impact of the system. Thus, it is not clear what actually happens
after a fault was injected or whether or not a fault propagates in the SUT after injection.
Moreover, most of the existing SWFI tools lack the ability to produce those faults that

propagate and result in unexpected future behavior (i.e., race condition) in the system.

16

The majority of faults that SWFI tools are capable of simulating are basic in nature. The
faults are typically due to coding errors, I/O errors, and memory corruption. Fortunately,

researchers are now beginning to research how SWFI can be used to assess fault

propagation [26].

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

V. RELATED RESEARCH

A. SWFI TOOLS

Today’s critical systems designed to satisfy people’s demands, require thorough
testing of many of their essential system attributes, such as reliability, availability, and
safety. This has given rise to different approaches of implementing fault injection tools.
The following briefly describes some of the existing SWFI tools, including some of the
features that were considered for our study.

B. FERRARI

The Fault and Error Automatic Real-time Injector (FERRARI) tool emulates
hardware faults using software traps [28]. These traps inject CPU, memory, and bus fault
types. Two running concurrent processes carry out the actual fault-injection process:

fault/error injection process and the target program process.

The fault/error injection process begins by having the target program process set
itself as traceable. Later, the target program loads itself into memory and starts its
execution. The target program then encounters a software trap; this occurs when a trace
bit is encountered from the process control block. The software trap then invokes the
fault/error injection process to execute a sequence of system calls used for mutation
purposes (e.g., altering the content of memory and registers). Typically, fault injections
involve altering content from selected registers or memory locations.

C. XCEPTION

XCEPTION uses a debugging and monitoring model approach to inject faults into
software [16]. The debugger is directly programmed into the hardware to allow for the
complete separation between the SUT and the fault injector. As a result, code
instrumentation is avoided and the tool’s fault injection process can take advantage of
already defined fault triggers (i.e., hardware exception triggers) in the processing

hardware.

Unlike FERRARI, XCEPTION does not use software trap instructions to trigger
fault injection. Rather, it uses a processor’s built-in hardware fault triggers to invoke fault

injection. The fault injector is implemented as an exception handler. Thus, when
19

XCEPTION reaches a predetermined accessible address, an exception is raised, and a
fault is injected. As a result, the SUT’s memory content and registers are corrupted
according to the specific fault type.

D. GOOFI

GOOFI (Generic Object-Oriented Fault Injection Tool) is a platform independent
tool that provides a user-friendly SWFI environment [21]. GOOFI’s main purpose is to
provide support for the adaptation of new fault injection techniques. Many of its building
blocks consist of abstract methods that are reusable when defining algorithms from other

SWEFI techniques.

Currently, GOOFI supports a SWFI technique called Scan-Chain Implemented
Fault Injection (SCIFI). The SCIFI technique uses built-in logic!4 to inject faults into
pins and other internal elements of an integrated circuit. The SCIFI fault injection
process begins when the SUT is fully initialized with workload information and initial
inputs, such as campaign data.'> 1In addition, the fault injection algorithm reads
campaign data from an SQL database. The user is responsible for providing this
information via a GUI. The database stores all SWFI data (e.g., targeted system

information, fault injection experiments).

When a breakpoint condition is reached, chosen faults are injected by reading
scan-chains, bits are inverted, and the resulting scan-chains are written back to the
system. The whole process repeats itself until a termination condition is reached.
Throughout the entire fault injection process, system states were captured and stored into
the database for further analysis. Results typically include: detected and escaped errors,
latent errors, and overwritten errors (i.e., no difference of system dates between pre-fault
injected state and post-fault injected state).

E. DOCTOR

DOCTOR was designed to address the inability of SWFI to emulate the effects of

actual faults (e.g., latent faults commonly caused by communication errors) [22].

14 An example of a built-in test-logic is the boundary scan-chains and internal scan-chains that are
present in many modern VLSI circuits.

15 As it pertains to SWFI, campaign data can consist of fault models, fault injection breakpoints,
injection times, and bit inversions.

20

Therefore, researchers have developed a fault model in DOCTOR to emulate processor,

memory, and communication faults.

DOCTOR Faults are triggered via time-out, traps, and code modification. When a
time-out occurs, the fault injector emulates memory faults by writing over the memory
content of the CPU. Software traps trigger non-permanent CPU faults. For permanent
CPU faults, software fault injection changes code instructions during compilation to

emulate faults that corrupt data or instructions.

DOCTOR consists of five major components: the Experiment Generation Model
(EGM), the Experiment Control Module (ECM), the Fault Injection Agent (FIA), the
Data Collection Module (DCM), a logging component that collects SWFI data during or
after an experiment, and a Data Analysis Module (DAM) that analyzes data collected by
the DCM. EGM is responsible for generating workload execution code that contains
instructions necessary to carry out processor-fault injections. It also reads user data such
as fault type and injection time. In addition, the ECM acts as the controller, by sending
commands to the FIA and the DCM. The FIA is responsible for injecting faults and it
also controls the execution of the workloads via shared memory and system calls. The

DCM’s basic function is to continuously log events during experiments.

DOCTOR can emulate both permanent and non-permanent faults. Permanent
CPU faults such as data corruption is emulated by changing program instructions during
compilation via fault injection. For the simulation of non-permanent faults (i.e., transient
or intermittent faults), fault injections issue random faults via traps.

F. FAILURE SIMULATION TOOL (FST)

FST employs wrappers around executable program binaries (e.g., Windows 32
DLL functions) to artificially inject errors or exception calls [1]. A FST interface is
instrumented between the SUT executable and the underlying platform’s DLL functions.
Interactions (i.e., function calls) between the SUT and platform are captured and altered.
Functions are modified via the application’s Import Address Table (IAT). The IAT keeps
track of addresses of imported DLL functions. Thus, by modifying the IAT, testers can
re-direct intended function calls to modified functions pointing to the wrapped DLL. The

21

wrapped DLL will have the ability to call an alternative function, change function
parameters, modify function return values, or return an exception or error code.

G. FTAPE

The Fault Tolerance and Performance Evaluator (FTAPE), developed at the
University of Illinois, injects faults into CPU memory locations, modules, and disk
subsystem. FTAPE injects faults as bit flips to simulate errors. A routine that is executed
in the disk system’s driver code helps simulate I/O type errors (i.e., bus errors). Fault-
injecting drivers added to the operating system create all other errors, hence, reducing the
need for modification to the SUT [32].

H. IDEAS FOR SWFI DEVELOPMENT

The following is a list of features from the corresponding SWFI tools that were

considered during SWFI development:
= Use of a debugger to step through code during fault injection (XCEPTION).
= Use of fault triggers to invoke fault injection (XCEPTION).
= Use of software traps to emulate faults (FERRARI).
= Use of breakpoints to determine time of fault injection (GOOFT).
= Initiate a time to determine when to inject faults (DOCTOR).
= Emulation of processor, memory, and communication faults (DOCTOR).
= Artificially inject exception calls (FST).

= Processing of bits to emulate errors (FTAPE).

22

V1. SIMPLE - DESIGN AND IMPLEMENTATION

A. INTRODUCTION

SIMPLE stands for Software Fault Injection through means of a Mechanized
Prototype Lightweight Engine. 1t is the authors’ attempt to implement a semi-automated,
fault-injection test-harness for Java-based systems. The acronym is intended to convey

that a Software Fault-Injection process need not be overly complex.!6
Our reasons for developing SIMPLE is two-fold:

Firstly, we sought to provide a software fault-injection tool prototype that
facilitates software testing. In case studies described in Chapter VII, we found our tool to
be practical and beneficial. For example, SIMPLE exposed bugs in a couple of
applications that eluded previous software testing. Ultimately, SIMPLE could serve as a

practical resource tool for those interested in learning SWFI.

Secondly, we anticipate our design approaches, implementation choices, and
lessons-learned to assist others in the construction of a robust fault-injection software

tool. UML diagrams have been provided to supplement our design discussions.

As its name implies, SIMPLE is fairly straightforward to use. Testers configure
faults and associated fault attributes via a fault configuration file. The fault attributes
determine the fault type, injection time, and source location of a specified fault. SIMPLE
then processes these faults and transparently pre-instruments the SUT when necessary.
After SIMPLE launches the SUT, faults are injected via fault triggers issued during
execution. During this period, testers record suspicious and/or erratic behavior, such as

thrown exceptions, performance degradation, and inaccurate program responses.

Our tool focuses only on Java-based systems. In general, Java is becoming the

programming language of choice within many defense agencies, especially at SSC-SD.17

16 Dr. Jeff Voas himself expressed these exact sentiments in a software fault-injection seminar given at
the Naval Postgraduate School (NPS). The seminar, entitled “Discovering Unknown Software Output
Modes and Missing System Hazards”, was given on April 4, 2002.

17 Numerous projects at SSC-SD require the use of Java, and many engineers are being retrained as a
result. Additionally, SSC-SD is also hiring New Professionals (NPs) with strong Java prerequisites.

23

Indeed, Java appears to be the front-runner among other languages used to implement and
deploy solutions for the US Department of Defense (DoD) [35].
B. ACTIVITY AND CLASS DIAGRAMS

Figure A-1 in Appendix A depicts a UML activity diagram for SIMPLE. More
specifically, SIMPLE engages in the following activities: Read-Faults, Instrument-SUT,
Deploy-Faults, Execute-SUT, Trigger-Faults, and Inject-Faults. The Trigger-Faults and
Inject-Faults activities are separate because a fault is not always injected when triggered.
For example, during the fault-deployment stage, each fault is mapped to a fault-location,
which consists of a specified class and a line number within that class. Whenever
execution passes through a fault-location, the corresponding fault will always be
“triggered.” The actual injection of that fault, however, depends on the current values of
its associated fault attributes. For instance, some fault attributes, such as fault
probability, may cause the fault to be suppressed. Fault attributes are discussed in later in

this chapter.

Figures A-2 and A-3 depict UML class diagrams that illustrate the basic
constituents of the SIMPLE architecture. =~ The principal components include a
SimpleHarness, a FaultParser, an EventThread, a FaultManager, an SUTInstrumentor,

and a Fault object.

The main program for SIMPLE is the SimpleHarness component. It encompasses
all the activities described in the previous activity diagram. The arguments to
SimpleHarness specify the application name and supporting classpath elements. This
provides the SIMPLE components with information about the SUT. The
SUTlInstrumentor, for instance, uses the provided classpath information to locate SUT

classes for instrumentation.

The FaultParser component reads and parses fault information from the fault

configuration file. Depending on the particular type of fault, the FaultParser either:
1) Constructs a Fault entity to add to the FaultManager, or

2) Invokes the SUTInstrumentor to pre-instrument faults into the SUT.

24

Faults that require pre-instrumentation include memory-exhaustion, processor-
exhaustion, forced-delays, and exception-throwing faults. These faults are discussed in

the next section.

The FaultManager component manages faults during SUT execution. When a
fault trigger is encountered, the FaultManager is preempted to process all corresponding
faults that apply specifically to the trigger. The FaultManager then checks these faults

against their fault attributes to determine whether they are to be injected.

The EventThread (also can be referred to as the Faultinjector) component
monitors execution and issues fault triggers based on user-specified fault locations pre-
configured into SIMPLE. Once a fault trigger is issued, the SUT execution pauses while
the FaultManager processes faults and considers them for possible injection into the

SUT. Afterwards, the SUT resumes execution until the next fault trigger occurs.

The Fault component defines a fault specification in SIMPLE. In particular, each

fault shall contain user-specified information indicating the following:
1) Where it will be injected,
2) When it will be injected,
3) How it will be injected, and
4) What will be injected.

Currently, there are two categories of fault types: Those that are pre-instrumented
into the SUT, and those that are not. The next session discusses the different types of

SIMPLE faults.

To control pre-instrumented faults embedded within the SUT, the EventThread
component communicates with the SimpleHelper component that acts as an auxiliary
control component. Its primary role is to properly regulate fault activation on the SUT.
However, the caveat here is that the SimpleHelper class must be integrated into the SUT.

C. FAULTS IN SIMPLE

SIMPLE is primarily a state-based fault-injection engine. That is, it has been
designed to mutate internal data variables within the SUT. Additionally, SIMPLE can be

25

classified as a glass-box fault-injection technique since it taps into the inner workings of
the software. As it pertains to faults, we implement fault models that emulate internal
state corruption. The Fault subclasses defined in the class diagram provide the

hierarchical infrastructure that enables SIMPLE to inject state-based faults.

Recall that faults are entered into SIMPLE via a fault configuration file.
Therefore, testers must properly define fault location, fault type, and other fault attribute
information for each fault via XML!8 notation. Consequently, it is possible for many
faults to exist at a single class location. SIMPLE will issue an error message when an
invalid fault input is encountered in the fault configuration file. Figure 1 below shows a

sample fault input listed in a configuration file.

12 <l-- Test Case 1. withinRangeNetworkPararmeters--»

13 <Fault class="csma.app. Network SimulationMainTest" lineMo="533" numOflrvoc="1">
14 <PrimField varName="numOfRuns" valToSet="093"/>

15 </Fault=

16

17 «l-- Test Case 2: outOfRangeMetworkParameters--»

18 «Fault class="csma.app. Metwork SimulationMainTest” lineMo="92" numOflrvoc="1">
19 <PrimField varame="packetLength" valToSet="-999"/>

20 </Fault=

21

22 <l-- Test Case 3 queueSingleElementToQueue >

23 <Fault class="csma.app. Network SimulationMainTest" lineMo="128" numOflnvoc="1">
24 <PrimField varName="maxPackets" valToSet="-933"/>

25 </Fault=

26

27 «l-- Test Case 1. gueueSingleElementToGueue -->

28 «Fault class="csma.client.PacketCueueTest" lineMo="44" numOflnvoc="1">

29 <0ObjLocal varMame="packet" setToMull="true" /=

30 </Fault=

Ell

Figure 1. Sample Fault Input

Refer to Appendix B for a complete grammar specification of the fault configuration file.

1. Fault Types

The fault types SIMPLE currently supports are variable-mutation, memory-
exhaustion, processor-exhaustion, thrown-exception, and forced-delay faults. All faults,
except the variable-mutation fault, require pre-instrumentation into the SUT. That is,
these faults must be physically embedded into the byte-code of the SUT. Sections D and

F of this chapter describes how fault pre-instrumentation occurs in SIMPLE.

18 As developed by the World Wide Web Consortium (W3C), the Extensible Markup Language
(XML) is the universal format for structured documents and data on the Web. More info can be found at
[36].

26

Variable-mutation faults model corrupted state variables presumably caused by
race conditions, class misuse, or incorrect logic. These faults can be applied to
practically any class field or local variable within the SUT, regardless of scope or
visibility.

Memory-exhaustion faults simulate both memory leaks and reckless memory
consumption within the SUT. When injected, these faults instantiate a number of
arbitrary object instances into the memory heap of the SUT. The number of objects

instantiated is configurable in the fault configuration file.

Processor-exhaustion faults create a number of executing threads within the SUT.
It exhausts CPU resources used by the SUT. The number of thread processes created is

configurable in the fault configuration file.

Thrown-exception faults invoke exceptions at user-specified locations within the
SUT. These faults are particularly useful in assessing the fault-handling and error-
recovery mechanisms of the SUT. The type of exception is configurable in the fault

configuration file.

Forced-delay faults cause delays to occur at user-specified locations within the
SUT. These faults force timing errors and also mimic time-consuming tasks. The length
of the delay is configurable in the fault configuration file.

2. Fault Attributes

In general, fault attributes identify the what, when, where, and how properties for
a fault in SIMPLE. For example, the what determines the type of fault to be injected.
The when specifies the fault activity time-frame. The where indicates the location of the
fault within the SUT. The how specifies how the fault is to be injected. Currently,
SIMPLE supports the following fault attributes:

The fault-type attribute specifies the kind of fault to be injected. This attribute
determines whether pre-instrumentation is necessary for the specified fault. Except for

variable mutation faults, all other faults require pre-instrumentation.

27

The class-name attribute determines the name of the SUT class in which the fault
will reside. The tester must specify the fully qualified class name in the fault

configuration file.

The line-number attribute indicates the line number of the class where the fault

will be located. Only certain line numbers can be selected within the source code.

The enable attribute determines whether the fault is active or inactive during
fault-injection. This attribute takes priority over all other attributes that also specify a

fault activation status.

The start-time attribute defines the beginning time that the fault will become
active. The default value for this attribute is —1, which means that the fault is active at

the onset.

The end-time attribute denotes the finish time that the fault becomes inactive. The

default value for this attribute is —1, which means that the fault is active indefinitely.

The activateAt attribute specifies a location within the SUT that the fault is to be

activated when encountered during execution.

The deactivateAt attribute indicates the location within the SUT that the fault is to

be deactivated when encountered during execution.

The probability attribute describes the injection probability of the fault.
Probability values range from 0.0 to 1.0. The default value for this attribute is 1.0, which

means that the fault is always active when triggered.

The number-of-invocations attribute determines the number of times a fault is
injected. The default value for this attribute is —1, which means that the fault is always
active when triggered, as far as this attribute is concerned. Of course, other fault

attributes may also determine whether the fault is active.

The variable-name attribute identifies the target program variable to be mutated
when the fault is injected. The variable can either be a class field member variable or a

local variable.

28

The set-to-value attribute indicates the value to be applied to the target variable.
The default value for this attribute is random, which means that a random value is applied

to the type-specific variable.

The set-to-null attribute determines that a null-value will be applied to the target
variable. The default value for this attribute is false, which indicates that a null-value is
not applied to the target variable. This attribute applies only to variables that are
instantiations of object classes. For this reason, primitive variables to be corrupted, such

as integers, cannot use this attribute.

The arg attribute is a general-purpose attribute used that helps deploy memory-
exhaustion, processor-exhaustion, thrown-exception, and forced-delay faults. For
example, the memory-exhaustion fault uses arg to determine the number of objects to
instantiate within the SUT.

3. Fault Triggers

Each fault location!® specified in the fault configuration file is associated with a
corresponding fault trigger prepared during the fault-deployment phase. The fault trigger
represents a specialized run-time event used to invoke the fault-insertion process. When
a fault location is encountered during execution, a fault trigger prompts SIMPLE to inject
all applicable faults that correspond to the fault location. However, faults can be
triggered, but not necessarily injected (i.e., activated). This solely depends on the current
values of their fault attributes. Any single fault attribute can suppress a fault from being
injected, regardless of the values of other attributes. For example, if the number-of-
invocations attribute is 0, then the triggered fault will not be injected. Similarly, a
probability attribute of 0 will also suppress the triggered fault from being injected.

D. JAVA TECHNOLOGIES

This section describes some of the Java Technologies and APIs that were
explored for SIMPLE. It also describes the technologies ultimately selected and utilized
for SIMPLE development. Of particular interest is the discussion in Section F of this

chapter concerning pre-instrumentation issues.

19 Fault location refers to the location defined by a fault’s class-name and line number attributes.

29

1. Candidate Technologies

During the early development stages, we considered using a metaobject protocol
as an approach to inject mutation faults into a Java application. In a metaobject protocol,
a base-level object and a meta-level object are both bound to classes during one of the
following stages: compile-time, load-time, or run-time. The base-level object exposes
behavioral events invoked by class instances during execution. Base-level behavioral
events typically include method calls, exception invocations, and field-data access. The
meta-level object intercepts these events before reaching the application for further
processing [14]. For example, depending on the application utilizing this protocol, an

intercepted event can be processed in one of the following ways:
1) The event can be passed on to the application,
2) The event can be suppressed from reaching the application, or
3) The event can be modified upon arrival, and then passed on to the application.

Thus, this protocol provides for a powerful mechanism for implementing software fault-
injection. [13] provides a summarized comparison matrix of reflective Java API that can

be utilized to implement a metaobject protocol.

Javassist and Aspect] were investigated early in this study. Both technologies
provide a high-level, feature-rich Java API, and are distributed under an open-source

license. However, they differ in their implementation of the metaobject protocol.

Javassist stands for Java Programming Assistant and was developed at the Tokyo
Institute of Technology [37]. It uses load-time reflection for modifying Java byte-code
and defining new class elements. In addition, it consists of a Reflection API that

provides metaobject control over participating application classes.

By using Javassist, metaobject bindings and class redefinitions can be performed
at load-time. To accomplish this, a specialized classloader invoked at load-time
intercepts and modifies class byte-definitions accordingly. Unless saved to the disk, class

redefinitions are only active during the execution of the application. A Javassist program

30

harness must launch the application in order to utilize the classloader. One caveat of

Javassist is that it cannot modify Java system classes at load-time due to Java security.20

1 import javassist.™,
2 import javassist.reflect.™,

public class Werbosetetaobject extends Metaobject {

i Intercepts constructor calls
public “Yerboseletaobject(Object self, Object(] args) {
super(self, args);
System.out.printin("™ constructed: " + self.getClass(). getMame();

!

4
5

B

7

g

9

10

11

12 #Intercepts field reads

13 public Object trapFieldRead(String name) {
14 System.out.printin(™™ field read: " + nameay);
15 return super.trapFieldRead(name);

16

17

18

19

20

}

i Intercepts field writes
public vaid trapFieldWrite(String narme, Object value) {
System.out. printing™* field write: " + name];
21 super.trapFieldWrite(name, walue);
2 1

24/ Intercepts method calls
25 public Object trapMethodcalliint identifier, Object[] args)

26 throwes Throweable

2

28 String methodMame = getMethodiame(identifier);

29 System.out.printin{"™™ trap: " + methodMame

30 +"()in " + getClassMetaobject(). getName(),
31 return super.traphethodcall{identifier, args);

3z}

33}

Figure 2. VerboseMetaobject class

Figure 2 shows source code for a VerboseMetaobject class that subclasses the
metaobject class defined in Javassist. The trapFieldRead method (lines 12-16) and
trapFieldWrite (lines 18-22) method intercept class field variables accessed during
execution. In other words, the trapFieldRead and trapFieldWrite methods are triggered
each time program variables are accessed and modified during execution, respectively.
Similarly, the trapMethodCall method (lines 24-32) intercepts class methods called
during execution. The method arguments provide details describing the program
variables and methods being intercepted during run-time. For example, on line 13, the
name parameter of the trapFieldRead method identifies the actual variable being
accessed Similarly, the identifier and args parameters of the trapMethodCall method,

shown in line 25, identify the application method being invoked.

20 Java system classes include specialized classes that begin with java.* or javax.*. Fortunately,
Javassist provides additional tools to modify these classes at compile-time if so desired.

31

Aspectl], distributed by Xerox PARC, is a Java extension that supports the aspect-
oriented programming (AOP) paradigm [38]. Aspect-oriented software development
(AOSD) supports the use of separation of concerns (SOC) in software development. The
techniques of AOSD make it possible to modularize crosscutting aspects of a
componetized system [64]. Keeping in tune with the AOP programming model, AspectJ
can programmatically modularize crosscutting concerns that inherently exist in many
software implementations. For example, logic scattered throughout the source code can
be made accessible to the programmer and used in a modularized programming construct.
Therefore, extended application functionality can be constructed in a manner such that it
does not require modification of existing infrastructure. Specifically, joinpoint and
pointcut programming constructs enable programmers to capture events at well-defined
areas of interest (i.e., clearly defined juncture points) in a program’s execution.
Examples of well-defined areas of interest include method calls and data-field access.
Additionally, these programming constructs derive advice methods that encompass

additional business logic that are applied at corresponding juncture points.

import java.lang. MullPointerException;

privileged aspect ExampleAdvice
!

1

2

3

4

5 private static final int NEGLECT =0,

B private static final int DUPLICATE =1,

7 private static final int THROW _EXCEPTION = 2;

a3

9 N Assume that controlFlag can be externally manipulated
10 public static int controlFlag =-1;

12 woid around(CollectionObject collection, Object obj): target{collection)
13 &8 args(obj) && execution(” CollectionObject. add(Object))

14 |

15 if {contralFlag == NEGLECT)

17 return; & lgnare method call

19 }else if (controlFlag == DUPLICATE)

g? { proceed{collection, obj); & Add duplicate to wector

g% }else if (controlFlag == THROWY _EXCEPTION)

g% {} throw new MullPointerException("Forced Exception™); & Throw exception

28 proceed(collection, obj); /f default action ...

Figure 3. Example Advice

32

As an illustration, Figure 3 shows sample source code for an advice that affects
the behavior of the add method of a CollectionObject class (alluded to in line 13)
whenever called. Depending on the current value of the control flag, one of the following

behaviors will occur:

1) The method will neglect to add the object,

2) The method will add multiple objects, or

3) The method will throw a NullPointerException back to the caller.
Note that the advice implementation operates as a wrapper to the add method.

Aspect] requires a full recompilation of application source code in order to
integrate advice constructs. Moreover, this recompilation requires use of an Aspect]

compiler.

Due to the abilities of capturing and changing software behavior, both Javassist
and Aspect] can be utilized for SWFI purposes. We considered both of them for the
design of SIMPLE. Javassist and Aspect] can be especially powerful in assessing system
interface interactions at the unit-, component-, or subsystem-level. Binder advocates
integration testing to search for faulty components that lead to inter-component failures
[27]. These two technologies can help facilitate this and other forms of similar testing

strategies.

One problem, however, is the issue of fault-injection granularity. This refers to
where a particular fault can be injected within the application. In the metaobject
protocol, the only events that can be intercepted are at well-defined junctures within the
application. These junctures include method calls, constructor calls, field-data access,
exception invocations, and a few others. In this case, faults can only be applied at these
junctures. In Figure 3, we can see that faults were injected at each immediate add method
invocation; however, it is not possible to arbitrarily specify a line number within the body

of the add method to inject our fault.

Being able to specify a flexible location to inject a fault is an especially important
feature we wanted SIMPLE to address. Arguably, many software failures can be

attributed to inter- and intra-component interfaces. However, it would be interesting to

33

investigate software failures caused by faults located in non-obvious areas of the code.
By non-obvious, we mean code not located at well-defined junctures. Whether this
strategy is worthwhile to pursue remains a topic of future research. In the next section,
the following technologies were used to accomplish this goal. Problems encountered are
discussed later in Section F.

2. Selected Technologies

The three major challenges faced when designing SIMPLE were:

1) How to define fine-grained injection points within an application?
2) What kinds of faults can be injected in the application?

3) How can exception and similarly related faults be injected?

The first question was briefly touched on in the previous section. In this case, we
want to somehow extend the fault-injection coverage of an application to give testers
more flexibility in where they can locate a particular fault, not restricting them to placing

faults at well-defined junctures.

The second question is concerned with the variations of fault types that SIMPLE
could allow. In our study, we chose to emulate real-world faults as much as possible.
Hence, to do this, we focused on employing two well-documented fault-injection
techniques: data- and code-based mutations [3]. If implemented correctly, these two

techniques could support a wide range of fault models to be emulated.

The third challenge was to figure out how exception faults could be emulated.
Emulating exception faults would be an important feature in SIMPLE, especially for the
practice of fault acceleration. Fault acceleration refers to the process of accelerating an
application’s failure rate in a controlled environment within a particular time frame [7].
(The concept of fault acceleration is revisited in Chapter VII.) By simulating timely
exception faults, for instance, we would be able to measure the fault-tolerant
characteristics of the SUT. Of course, SIMPLE could easily corrupt the program to
normally invoke the desired exception. In this case, we would have to wait until these
faults fully manifested themselves during execution. However, it would be more efficient

to programmatically throw the exception at any desired location. For example, a feasible

34

approach was illustrated in Figures 2 and 3 using the metaobject protocol approach
discussed earlier. Fortunately, the Java Platform Debugger Architecture (JPDA) and
Compaq JTrek APIs adequately address this issue. In fact, these technologies proved to

be a much elegant solution than the metaobject protocols previously mentioned.

Sun Microsystems’ JPDA provides [39] provides debugger support for the Java 2
Platform, along with defining high- and low-level standardized debug interfaces. The
JPDA comes with a complete reference implementation that is publicly available for
download. In particular, the JPDA offers an API equipped with debugging features such
as breakpoint processing, code stepping, variable evaluation and modification, and
watchpoint configuration. These features easily gather insight about an application
running in a targeted Java Virtual Machine (JVM). Moreover, the JPDA launches the
SUT in a separate debug JVM process. In this regard, the JPDA back-end becomes a
remote test harness to the SUT. In turn, the debug JVM provides hooks that allow a

JPDA back-end to access run-time information.

When considering possible designs for SIMPLE, the JPDA offered several highly
desirable, crucial services. First of all, the JPDA supports the ability to configure
breakpoints practically anywhere in the program, ensuring that the fault-injection
coverage is expanded to include “hard-to-reach” areas of the code. Secondly, the JPDA
supports accessing and modifying data variables within the debuggee application at run-
time. Hence, it provided a mechanism for mutating data variables, thus affecting
application state. As a result, SIMPLE could conceivably emulate faults caused by race
conditions, misuse of class methods, or incorrect programmer logic.2! Lastly, the JPDA
technology provides a programmatic approach to automate the fault-injection process
without intervention by the tester. Binder promotes the use of automatic instrumentation

since manual instrumentation is error-prone and time-consuming [27].

With the granularity and fault type issues resolved by JPDA, we focused our
attention to addressing the third question, which concerned emulating exception faults.
Unfortunately, the JPDA did not provide a facility to inject exception invocations. As a

workaround, JPDA could be used to indirectly force exceptions by mutating data

21 We rationalized that code-mutation resulted in data-mutation. Hence, we felt we were not obligated
to implement this type of mutation scheme.

35

variables at appropriate times. For example, consider the code shown in Figure 4 below.
One possible way to invoke a NullPointerException, say, on line 637, would be to mutate

the result variable to a null value.

624 ResultSet result = executeQuery("SELECT * FROM FLIGHT;™;
625

626 try

627 {

628 while (result. nexti))

529 {

630 if (vectar == null)

631 i

632 vector = new Flight\ector();

533 }

534

635 flightMurnber = (String) result. getString("FLIGHT _NUMBER");
636 departDate = (String) result. getString("DEPART _DATE";
637 departTime = (String) result. getString("DEPART_TIME");
538 departCity = (String) result. getString("DEPART _CITY™;
639 arriveDate = (String) result. getString("ARRMNE_DATE™;
640 arriveTime = (String) result. getString("ARRENE_TIME");

Figure 4. Arbitrary Code Segment

However, how could other exception types be thrown? What combinations of
variables would have to be mutated to incur an OutOfMemoryException? s it even
possible to do this by only considering variables? How long would it take? In spite of
these issues, we abandoned implementing exception faults in JPDA. Instead, a pre-
instrumentation approach was considered as a possible solution. Even though this meant
physically changing Java class byte-code, we believed this to be our only viable
alternative.22 Fortunately, various open-source Java byte-instrumentation tools were
available that allowed for this type of experimentation. Therefore, developing a byte-

code instrumentation tool became a non-issue.

The Compaq JTrek Technology [40] provides an API to analyze, modify, and
profile activity of Java class files. By scanning class byte-code, JTrek formally breaks
down Java code into a hierarchy of analytical components: class files, fields, methods,
statements, local variables, and instructions. Each hierarchical component comes with its
own set of API for acquiring more detailed information about itself. More importantly,

JTrek comes equipped with byte-instrumentation API for inserting statements and

22 Both the FERRARI and DOCTOR fault-injection tools utilize a pre-instrumentation approach where
software trap instructions are inserted into byte-code. This was done specifically to simulate processor
faults.

36

instructions into Java classes. This key capability, along with its class-scan capability,

influenced us to consider using this API for SIMPLE.

JTrek offers the capability to insert a method call into a Java class. Thus, this
afforded us a pre-instrumentation capability we could integrate into SIMPLE. In
addition, this pre-instrumentation would only affect precompiled byte-code, and not
source code.?? Given this, we were now able to implement auxiliary methods that could
throw a diverse set of exceptions. These specialized methods would, in turn, be
automatically pre-instrumented into a Java class when called upon. This proved to be a
very effective technique for throwing exceptions. It gave us the ability to inject other
types of faults, such as memory-exhaustion, processor-exhaustion, and forced-delay
faults. The only caveat is that pre-instrumentation must be done before the SUT

application is launched.

E. STATE AND SEQUENCE DIAGRAMS

Figure A-4 in Appendix A illustrates a state diagram depicting a detailed account
of the activities previously shown in the activity diagram. It incorporates processes that
are embodied by the JPDA, JTrek, and Xerces APIs. For example, the JPDA API plays a
significant role in many of the diagram states such as SUT EXECUTE, RESOLVE
FAULT, TRIGGER FAULT, and INJECT FAULT. On the same token, the JTrek API is
largely responsible for the INSTRUMENT SUT state. The Xerces API [41] is
responsible for the READ FAULT state. Since the fault configuration file uses an XML
specification, Xerces was used to parse the XML nodes of this file. See Appendix B for

the grammar specification of the fault configuration file.

The RESOLVE FAULT and TRIGGER FAULT states specifically handle JPDA
debugger events generated by the target JVM. The purpose of these states will become
more apparent in the sequence diagrams to follow. The START TIMER state is

discussed in Section F.

The RESOLVE FAULT state encompasses the process of configuring breakpoints
(i.e., fault triggers) within the target JVM. A breakpoint is set for each fault specified in

23 This was a requirement we wanted to strongly adhere to as much as possible.

37

the fault configuration file. Recall that fault attributes provide class name and fault line
number information in the SUT. This fault-to-breakpoint mapping occurs during run-
time on a per class basis as classes are being loaded into the target JVM. Since specific
debugger events notify loading of a particular class, SIMPLE can programmatically
resolve any faults (i.e., configure any breakpoints) that are associated with the currently
loaded class. Resolving faults basically means the process of configuring appropriate

breakpoints for each fault.

The TRIGGER FAULT state encompasses actions taken by SIMPLE when a
breakpoint (i.e., a fault trigger) is encountered in the target JVM. When this occurs, the
target JVM pauses and SIMPLE delegates control to the FaultManager. In turn, the
FaultManager processes all faults that apply to that particular fault trigger. (At this
point, this activity is encompassed within the INJECT FAULT state.) The target JVM

resumes after the FaultManager has processed all faults.

Figure A-5 depicts a UML sequence diagram illustrating the top-level interactions
between the SimpleHarness, EventThread, and Target JVM. It presents another high-

level view of the activity diagram.

In Figure A-6, a UML sequence diagram illustrates how SIMPLE reads and
parses faults into the system. Depending upon the type of fault being parsed by the
FaultParser, faults are either added to the FaultManager or pre-instrumented within the
SUT. Note the methods that are called upon to set the fault attributes of the Fault object.
Refer to the psuedo-code portion of the diagram for an algorithmic view of this

procedure.

The UML sequence diagram in Figure A-7 demonstrates how SIMPLE resolves
faults during execution. It presents another view of the RESOLVE FAULT state in the
state diagram. When a class is loaded, the target JVM immediately notifies the
EventThread. The EventThread then extracts the class from the debugger event, searches
the FaultManager for all correlated faults, and sets breakpoints based on fault-location.
Refer to the psuedo-code portion of the diagram for an algorithmic view of this

procedure.

38

In Figure A-8, a UML sequence diagram illustrates how SIMPLE processes fault
triggers and faults during execution. It presents another view of the TRIGGER FAULT
and INJECT FAULT states in the state diagram. When a breakpoint is encountered, the
target JVM immediately notifies the EventThread. The EventThread then extracts class
and location information from the debugger event. Next, the FaultManager receives the
extracted class information and processes the faults. In Figure A-8, note that a call to the
isTimeTolnject method determines whether the fault is injected or not. More precisely,
this method specifically examines the current values of the fault attributes. Refer to the
psuedo-code portion of the diagram for an algorithmic view of this procedure.

F. ISSUES, CAVEATS, LIMITATIONS, AND LESSONS-LEARNED

This section describes some existing problems encountered, plus some caveats
and limitations associated with using SIMPLE. We also describe the rationale behind
some of our design decisions.

1. Java Virtual Machine (JVM) Compatibility

SIMPLE is only compatible with Java-2 compliant JVMs that implement the Java
Debugger Interface (JDI) [39].
2. Requires Compilation with Debug Option

SIMPLE heavily relies on debugging information specially generated via the —g
debug option of the javac compile tool. In particular, SIMPLE uses line number and
local-variable debug information for identifying fault locations and candidate corruption
variables, respectively. For this reason, the SUT must be recompiled accordingly to
ensure that SIMPLE functions properly. A side-effect is that the generated Java class
files will be larger due to the extra-embedded debug information.

3. How to Handle Fault-Injection Time?

As discussed earlier in Section C, the Fault class introduces time-related attributes
that specify the activation time for a particular fault object. An interesting problem,
however, involves the handling of fault-injection time. This refers to time observed

during fault-injection testing.
Time issues arise because of the following reasons:

1) SIMPLE is essentially a remote application to the SUT.
39

2) Faults are maintained by mechanisms residing on both SIMPLE and the SUT.

3) Fault-injection time does not always begin at the exact moment that the SUT

1s launched.

Since fault mechanisms reside in both SIMPLE (for variable-corruption faults)
and the SUT (for pre-instrumented faults), it is ideal that each application obtains time
information from the same source. Keep in mind that SIMPLE and the SUT are separate
applications executing in different JVMs. If both applications were to keep track of time
independently, then an inherent drift incurred by each application would pose a problem.
For example, the resulting loss of time-synchronicity would cause time-activated faults in
both applications to be fired at unexpected times during execution. Hence, a protocol
needs to be implemented in order to maintain clock synchronization between SIMPLE

and the application.

In the current implementation, SIMPLE maintains an internal timer that provides
fault-injection time to both SIMPLE and the SUT. (Future implementations may
consider adding an external timer server to serve both applications.) Unfortunately,
overhead is created since SIMPLE has to continuously update the SUT with fault-
injection time. Depending upon the time update rate, this may or may not be a problem
during testing. In this thesis, we did not explore the implications caused by time-

communicated overhead. Therefore, we defer to future work in SIMPLE to assess this.

Determining the start of fault-injection time posed another challenge. In early
versions, SIMPLE activated its internal timer immediately after the SUT was launched in
the target JVM. However, we encountered problems. In one of our experiments, we
specified a fault in the fault configuration file to be activated within some predetermined
time frame. After SUT was launched, we realized that the SUT did not start until a
button was pressed on the SUT GUI. As a result, the SUT would remain idle, but
SIMPLE’s internal timer incorrectly continued to count. Eventually the activation time
frame defined by the fault expired even though the SUT never was actually started.
Figure 5, for example, shows an application GUI used in one of our case studies, where

the application did not start until the “Run” button was pressed.

40

JU JUnit =] 3

Junit

Test class name:

|bsma.cliem.PacketQueueTest |'|| || Run |

[v] Reload classes every run

| U
Runs: Errors: Failures:
0 0 0

| »

4] [»]
| X Failures [Test Hierarchy |

Figure 5. Application that is Activated by the RUN Button

To solve this problem, we incorporated a scheme in which the SUT notifies
SIMPLE to start or reset its internal clock timer. Fortunately, we were able to use
existing SIMPLE infrastructure to implement this. For instance, in the same manner that
fault breakpoints were configured, specialized timer breakpoints could also be set to
invoke a timer-reset action in SIMPLE. Thus, we designed it so that the tester simply

specifies the precise location for this timer-reset action via the fault configuration file.

More technically, a StartTimeEvent class was added to SIMPLE that
encompassed this timer-reset action. The StartTimeEvent class was made a subclass of
the Fault class so that StartTimeEvent objects could be added to the FaultManager
component without loss of generality. When a breakpoint occurs, the FaultManager
processes StartTimeEvent objects just as it would with Fault objects. If the breakpoint
correlates to the StartTimeEvent object, then the EventThread component automatically
resets its internal clock timer. This is the key activity for handling fault-injection time.
Hence, a button press in Figure 5 would cause a StartTimeEvent object to be processed.
This, in turn, would reset SIMPLE’s internal clock timer. The START TIMER state

shown in Figure A-4 in Appendix A diagrammatically depicts this reset action.

41

4. Pre-instrumentation — A Necessary Evil

Pre-instrumentation is a necessary evil for SIMPLE, especially for the emulation
of exception faults. Besides modifying the source code, to our knowledge no practical
means exist to remotely invoke exceptions into the various JVM threads. Recall that
SIMPLE launches the SUT in a separate process (i.e., in a separate debug JVM). The
only viable approach was to physically insert method calls to an integrated client-side
component (i.e., the SimpleHelper component). This technique would natively invoke
exceptions within the host JVM.24 Fortunately, these insertions would be transparently
made to the Java class byte-code, and not the actual source code. As described in Section

D, the Compaq JTrek API automated this pre-instrumentation procedure.

Pre-instrumentation, however, runs the risk of accidental software deployment. In
this case, software production code should not contain active debugging statements, or
other live macros that were specifically used for testing.25 Binder [27] advocates that
instrumentation be done on a copy of the class under test. Then the instrumented class is
discarded or archived after testing has been completed. To account for this, SIMPLE
instruments a copy of the Java class byte-code file, not the original. SIMPLE then
strategically places this copy in its classpath for proper usage during fault-injection
testing. In this way, SIMPLE restricts the mutated class for only its own use.

5. Pre-instrumentation Behavior is Inconsistent

SIMPLE locates an executable-statement by matching the line number specified
in the byte-code definition to the line number specified in the fault.26 In the event of a
match, SIMPLE inserts appropriate byte-code logic into the class definition at the
appropriate location. If a statement is not found, then SIMPLE issues an error message
indicating that the fault could not be deployed. Figure A-9 depicts SIMPLE’s pre-

instrumentation algorithm.

The matching algorithm is relatively straightforward to implement. It inserts fault-

code into a location specified by the tester. However, the algorithm implemented via

24 We had to relax a personal requirement prohibiting the modification of the SUT.
25 These should not necessarily be removed, but they definitely should be disabled for deployment.

26 An executable-statement is a single line of Java code that is executed during execution.

42

SIMPLE falters occasionally due to a limitation found in the JTrek API. The problem is
that SIMPLE occasionally inserts byte-code a few lines off from the original designated
location. In some cases, SIMPLE skips insertion of a byte-code even when required to
do so. Obviously, this anomalous behavior causes incorrect software assessments by the
tester during fault-injection testing. After further investigation, this problem originates
from the fact that line number information is not given for declarative Java statements,
such as try-catch statements. As a result, these declarative statements are ignored entirely
by the JTrek API. In turn, this throws off the statement line number count that JTrek

maintains on the class’ behalf.27

SIMPLE compensates for this problem by utilizing a workaround fix.
Specifically, this workaround scheme utilizes both source code and byte code of the
specified class to determine the location of a statement. When encountering a declarative
statement during the statement parse, SIMPLE refers back to the source code to
determine the statement’s exact line number within the class. SIMPLE then uses this
information to resynchronize the line number count for the class. This is an unfortunate
problem, but we intend to fix it in our next release.

6. Requires Source Code and Strong Familiarity Thereof

During fault-injection testing, SIMPLE requires testers to have full access to the

SUT source code for the following reasons:

1) Testers must ensure that the SUT is recompiled with the javac debug option
turned on. In addition, the SimpleHelper component must be recompiled
along with the SUT. SIMPLE does not currently automate SUT

recompilations.

2) In order to appropriately specify faults in SIMPLE, a class-name and line
number must be supplied as fault-attributes. Hence, the tester must be able to

freely examine (or update) the source code to determine where to place faults.

3) Testers should be familiar with the inner workings of the software in order to

understand software responses to triggered fault injections. The source code,

27 This is not a bug in JTrek since it was documented to behave in this manner. It is just that SIMPLE
is attempting to use the API in a manner that was not intended.

43

along with other available resources at their disposal, can supply a valuable
point of reference. Examples of other available resources include developers,
design documents, manuals, and previous test materials. In addition, source
code familiarity can help testers focus on perceived trouble spots in the

software. Therefore, testers can target faults more productively and efficiently.

4) To compensate for the pre-instrumentation flaw in SIMPLE described earlier,
the pre-instrumentation process will parse both the byte code and the actual
source code of the class in question; this is another reason that source code is
required during fault-injection testing. If source code is not provided, then
faults incorrectly may be instrumented at ambiguous locations within class
files. Consequently, this may have an adverse effect on software fault-
injection post-analysis. As mentioned before, we are currently investigating
alternative work-around solutions that do not rely on contrived processes that
algorithmically analyze source code.

7. Heisenberg’s Uncertainty Principle

As applied to software, Heisenberg’s Uncertainty Principle states that the process
of observing one aspect of software can introduce artifacts that adversely alter what is
ultimately being observed [42]. Unfortunately, SIMPLE adheres to this principle due to

the amount of overhead during fault injection.

The following scenario describes the overhead SIMPLE incurs during a typical

fault-injection session:

The debug JVM encounters a Breakpoint event and sends a Fault-Trigger
message to SIMPLE. SIMPLE receives this message and processes predefined injection
faults. For each fault that satisfies current fault-injection criteria, SIMPLE sends an
appropriate Variable-Change-Request message to the debug JVM. The debug JVM
receives the Variable-Change-Request message and processes it accordingly, thus

changing internal state variables as needed.

The above scenario demonstrates how SIMPLE uses a remote debugging
approach toward fault-injection. While intrusive in nature, SIMPLE can remotely assess

and affect SUT behavior via a communications link established with the debug JVM.
44

This communications link provides a dedicated channel for transmittal of debug

messages between the debugger and debuggee.

Though remote debugging has many advantages, some inherent disadvantages
include that of overhead. In [43], overhead is defined as the ... use of computer
resources for performing a specific feature.” In our case, we use the term as it relates to

Software Testing.

Unfortunately, overhead is unavoidable and inevitable in software testing. Thus,
it is sometimes necessary to integrate monitoring mechanisms to evaluate internalized
behavior during execution. Consequently, the software may have to be modified (i.e.,
made more testable) to accommodate for this. An unfortunate effect is that these
modifications potentially can affect software timing and performance behavior. This can
be especially problematic if not accounted for properly during testing, causing post-

analysis to yield misleading results.

In SIMPLE, one reason for the incurred overhead is due to the constant traffic of
debug information being maintained between the debugger and debuggee. For instance,
the debug JVM sends a Fault-Trigger message in response to an encountered Breakpoint
event. After processing a Fault-Trigger event, SIMPLE sends a Variable-Change-
Request back to the debug JVM. All of this interfacing takes valuable time. Thus, the
frequency of processed events and transmitted messages influences overhead and

ultimately, the overall performance of the system.

27

28 inti=0;

29 int factor = 2;

30 for (int j = 0;] < 1000; j++)

)

32 i =]~ factar,

33 factor = factor * 2;

34 System.out.printlni + ", " +] +", " + factor);
35 l

5]

Figure 6. Code Snippet

To illustrate this, consider the code snippet shown in Figure 6 that depicts a
tightly wound for-loop. If a variable-mutation fault were inserted at line 33, then a

drastic decrease in performance would occur. This is caused by the ensuing fault being

45

triggered, evaluated, and injected at each iteration of the loop. As a consequence, this
considerable lag conceivably can cause other aspects of the software to fail, or race
conditions to occur.28 In this case, the fault did evoke an incorrect software response, but
this may not be what the tester had originally intended for the fault. This would be

unacceptable when applying fault-injection testing to real-time systems.

Throughout its development, we attempted to minimize SIMPLE overhead as
much as possible so that it did not directly or indirectly invoke unintended software faults
during a fault-injection session. Thus, this prompted us to limit some of the features we
desired for SIMPLE. For example, the JPDA allows for the registration of other debug
events, such as Step, Method-Entry, Method-Exit, Exception-Trigger and Watchpoint
events.2? Conceivably, many of these debug events can be extremely useful to SIMPLE
for obtaining profile information concerning the SUT. The Step Event, in particular,
would be especially useful in measuring dynamic execution coverage metric.
Unfortunately, due to the potential extra overhead associated with these features, a

critical design decision was made to just use Breakpoint events in SIMPLE.

To compensate for minute delays caused by overhead, SIMPLE calculates the
time spent on processing faults and subtracts it from the calculated fault-injection time.
Overhead incurred by SIMPLE represents artificially-induced dead-time that should not
be considered when determining fault-injection time.

8. Affect of Compiler-Induced Optimizations

Since compiler-induced optimizations can change the resulting byte-code and thus
affecting source-level debugging, SIMPLE is not guaranteed to work with Java
classes compiled with the optimization option (i.e., the —O switch) of the javac compiler
tool.30

9. Software Fault Evaluation is Coarse-Grained

SIMPLE does not currently provide a built-in monitoring capability to track,

record, and analyze SUT execution during fault-injection testing. Nor does it consist of a

28 Imagine further compounding the problem by inserting another fault within the loop.
29 These events are typical in conventional debuggers.

30 The Sun Java 2 SDK does not currently provide an implementation for the -O option.

46

data-collection capability. Such capabilities would be especially useful during post-
analysis tasks, such as comparing data sets generated from different fault-injection test
sessions. However, a monitor mechanism would increase the resource overhead already

consumed by SIMPLE.

Unfortunately, previous attempts to integrate a run-time statement coverage
mechanism into SIMPLE proved too prohibitive due to the overhead it incurred.
Specifically, we attempted to utilize step events to record which source statements were
executed during run-time. Depending on how it is configured, Step events can be fired
for each program statement that is executed in the JVM [39]. Hence, a simple coverage
scheme would be to record all the statements that correspond to each Step event.
Unfortunately, imagine the cumulative impact that this coverage mechanism would yield
in the code example in Figure 6, where a Step event is generated for each Java statement

executed in the debuggee JVM.

Therefore, the lack of a coverage mechanism reduces software fault evaluations to
solely be based on observations reported by the tester during fault-injection testing.
Some relevant observations include the following: exceptions thrown, incorrect software
behaviors, faults handled correctly, faults handled incorrectly, and visible signs of
performance degradation. One caveat is that the tester must have some working
familiarity with the software in order to make appropriate assessments concerning the
software. Unfortunately, this brute-force and time-consuming approach can be very
tedious and coarse-grained. Moreover, it is prone to tester-error [27].

10. Interaction with Other Software Tools

Since SIMPLE exclusively launches the SUT in a separate JVM debug process,
this may limit concurrent collaboration with other software tools that also launch the SUT
in their own separate processes. Hence, it may not be possible for SIMPLE and other
software tools to simultaneously manipulate the same SUT process. Hence, testing using
the various tools in conjunction with SIMPLE should occur separately in different test

sessions.

However, this is not to say that it is impossible for collaboration between such tools

to occur. For instance, it is possible to use the output of SIMPLE to serve as input to

47

other tools, and vice versa. In this manner, no interference between test processes would
exist and information from one test tool could be passed on to the other. Section D of
Chapter VII documents some of our efforts using a coverage tool along with SIMPLE.

G. FUTURE ENHANCEMENTS

This section describes some future work proposed for SIMPLE.

1. Using Perturbation Functions to Improve Variable-Mutation
Performance

Despite the problems discussed earlier in this chapter, byte-code pre-
instrumentation works relatively well in SIMPLE. For instance, embedded SUT faults
can be natively executed on the host JVM with minimal intervention from SIMPLE.
Another reason is that pre-instrumentation would eliminate the need for a remote test-
harness such as SIMPLE, thereby increasing SUT performance and responsiveness.
Recall that debugger communication between JVMs can be quite expensive. For these
reasons, a full pre-instrumentation solution to fault-injection would be worthwhile to

pursue for enhancing the testing process.

The variable-mutation faults are not currently pre-instrumented in the SUT.
Recall that we chose to utilize Sun’s JPDA technology to help implement them.
However, an alternative approach would be to hard-code these faults using embedded
perturbation functions. Perturbation functions are the “source code instrumentation
utilities” used to mutate the data-states of selected program variables [3]. Technically
speaking, these functions can be used to change the values of certain SUT variables

during run-time.

public int perturbiint a, boolean activate)
{

if (activate)

}

return a;

1

2

3

4

5 return rand(a);
B

7

Gl

'

Figure 7. Perturbation Function

48

Figure 7 shows an example of a simplistic perturbation function that can mutate
an integer variable. Basically, the function accepts the variable to be mutated as an

argument to the method and returns a new value based on logic within the function.

Perturbation functions can be readily integrated into the SUT, provided that the
source code is available for annotation and recompilation. (Again, source code is needed
in order to replace variable-access code to corresponding perturbation method
invocations. After the appropriate annotations have been made, the source code is then
recompiled in to a new application build.) In some respects, perturbation functions
would have enhanced SIMPLE by eliminating reliance on a debugger-compliant JVM.
However, in the absence of a source code annotation tool, integrating these functions
would require the tester to manually implement the perturbation functions and modify the
source code accordingly. While not necessarily a bad thing per se, this approach would

not be very automatic or transparent to the tester.

In a manner similar to the pre-instrumentation technique employed by SIMPLE,
future work would entail investigating ways to automatically define, customize, and
insert specialized perturbation functions into the SUT. For example, one possible
approach would be to construct a source-level parser (e.g., a JavaCC3! parser) that
replaces variable names in the source code with an appropriate perturbation function
invocation.

2. Extending the Fault Range of SIMPLE

We described in Section C the range of faults that SIMPLE can inject into an
application. These currently include variable-mutation, memory-exhaustion, processor-
exhaustion, forced-delay, and exception faults. Future work would further extend this
repertoire to include communication-related faults, which are useful in testing and
evaluating message-based distributed software. (The Java Messaging Service by Sun, for
example, is a popular message-based protocol commonly used in distributed Java
applications [44].) Some examples of communication faults include the following: loss
of incoming messages, loss of outgoing messages, corrupted message content, delayed

message delivery, and duplicated message delivery [45]. Further work also includes the

31 JavaCCis a parser generator for use with Java applications [46].

49

implementation of additional infrastructure needed to support communication fault
injections.

3. Mutating Collections and Arrays

SIMPLE does not support the mutation of dynamic collection data structures and
fixed allocated arrays. Fortunately, the JPDA API does provide underlying support for
accessing and modifying array structures. Hence, this capability will be provided in
future versions of SIMPLE.

4. Data Collection in SIMPLE

Recall that SIMPLE does not proffer monitoring and data-collection services to
support fault-injection post-analysis. This is currently a severe limitation. One future
task would be to integrate such a module so that a run-time event-log is transcribed for
each SUT test run. The event-log, for example, would record events such as faults
injected, exceptions thrown, code coverage, and memory usage. Moreover, recorded
event timestamps would especially be useful in determining the more difficult fault-
injection metrics as fault latency and fault propagation.

5. Developing a GUI for SIMPLE

SIMPLE can be further improved by adding in a graphical-user interface (GUI).
Many existing SWFI tools (e.g., GOOFI [21] and DOCTOR [22]) provide a user-friendly
interface to facilitate the user's understanding of the system's functionality. Currently,
SIMPLE provides users with only primitive, textual output from the SUT. Thus, we had
to rely on "spot-checks" of program code to verify results. In addition, we were unable to
debug or trace back through the interactions or behaviors that led to a particular event (or
fault). Using a COTS coverage tool somewhat helped on verifying the location of the
injected fault. Still, we were unable to trace back calls after fault injection to possibly

discover other parts of vulnerable code.

For the next version of SIMPLE, we plan to implement a GUI to provide the

following features:

= Allow for users to interactively define and inject faults during run-time, thus

eliminating the need for batch-files or start-up scripts.

50

= Incorporate a debugger that enables users to step through code and inject faults at

pre-determined break points.

= Have an option to display coverage showing both covered and uncovered code

after a fault injection has been made.
= Enable users to interactively select fault injection models.
= A log screen that displays interactions between SIMPLE and the SUT.
= A separate screen that shows SUT output.
= A results screen that displays statistical data and relevant metrics.

= A dialog window to allow testers configure fault attributes (i.e., location, time)
during run-time.

6. Further Investigation of Java Technologies

ProbeMeister by Object Services & Consulting, Inc. claims to provide the
capability for dynamically inserting and removing byte-code into an application during
run-time [47]. This would certainly improve upon SIMPLE’s current fault pre-
instrumentation feature that requires all class modifications to be persisted (i.e., saved to
the disk) before execution. In addition, this technology could provide the basis for
implementing a built-in code-coverage or data-collection capability for SIMPLE. What’s
more, ProbeMeister also claims not to require source code. This is also highly desirable
since it would relax our source code requirement.

7. Further Investigation of Open-Source Fault-Injection Tools

The SourceForge website3? contains various open-source Java fault-injection
tools that are publicly available for download, such as FIDe (Fault Injection via Debug)
[67], the Linux Fault Injection Test Harness project [68], and JPWrite (Network Fault
Injection System for Java) [69]. Follow-on work for SIMPLE would entail close

examination of these fault-injection engines.

32 SourceForge website available at http://sourceforge.net/, 2002.

51

H. PLAN TO THROW ONE AWAY33

In its current form, SIMPLE is not yet an industrial-strength software testing tool.
Rather, it represents an implementation of accumulated ideas newly introduced to us
during our software fault-injection research. As to the prototypical nature of SIMPLE,
we defer to Frederick Brooks as he states in The Mythical Man-Month [65]:

[The first system] may be too slow, too big, awkward to use, or all three.

There is no alternative but to start again, smarting but smarter, and build a

redesigned version in which these problems are solved ... Where a new

system concept or new technology is used, one has to build a system to

throw away, for even the best planning is not so omniscient as to get it
right the first time.

Therefore, SIMPLE is at best a skeletal testing tool that needs to be improved
upon for robustness, usability, and for other requirements that are presently unknown to
us. In this regard, we heed Brook’s advice and anticipate using our lessons-learned and
experiences to construct a more robust version of SIMPLE. Our motivation to continue

development is given by example in the case studies chapter.

33 This section is titled after a chapter of The Mythical Man Month by Fredrick P. Brooks, Jr. The
chapter reference refers to the prototypical nature of SIMPLE.

52

VII. CASE STUDIES

A. INTRODUCTION

Upon the completion of SIMPLE, several case studies were immediately

conducted to evaluate the usability and effectiveness of SIMPLE.34

Section B of this chapter describes how SIMPLE can verify test cases generated
for unit-level testing. In particular, SIMPLE assessed unit tests developed for a Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) LAN discrete-event
simulation program. Section C documents how SIMPLE uncovered software frailties in
our prototype of an airline reservation system (ARS). In addition, the notion of fault
acceleration is demonstrated in this section. Section D documents how SIMPLE
effectively increased test coverage during software testing.

B. CASE STUDY I: USING SIMPLE TO VERIFY TEST CASES

Mutation testing provides a systematic means to evaluate test-case adequacy [10].
As demonstrated later, mutation testing is useful for verifying unit- and integration-level
testing strategies. Specifically, this type of testing involves creating mutant programs to
corrupt program state. Thus, mutant-induced errors can evaluate test case fault
sensitivity. As Voas mentions in [3], “Mutation testing attempts to see how good test
cases are at detecting injected anomalies.” For instance, if the test case detects
anomalous behaviors caused by the mutant program, then this test case is very effective.
On the other hand, if the test case misses the error, then it is deemed ineffective for
testing. Fortunately, those test cases found to be inadequate can be corrected in time for
testing. Thus, this verification process improves the overall reliability of our test cases.
Remember, bugs that escape the testing phase due to a faulty test plan will in general be

more expensive to fix in later developmental stages [48].

SIMPLE can be an effective mechanism for mutation testing and test case
assessment. Test cases can be verified using fault-injection to ensure their effectiveness
and adequacy. As an illustration, SIMPLE was used to verify a number of test cases

previously generated for the CSMA/CD simulation program.

34 Simultaneously, these case studies also have served to test, troubleshoot, and debug SIMPLE.

53

1. CSMA/CD Software Description

In their network utilization study, Sadiku and Ilyas implemented software to
simulate a local area network that utilizes Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) access protocol [49]. The CSMA/CD software simulates the
processing of data packets communicated between client workstations. It attempts to
model a realistic network transmission medium by allowing “collisions” to occur during
message transportation. In effect, this simulates random interruptions and/or disturbances
in network traffic flow. During the simulation, network-centric measurements are
generated, such as packet delivery delay, data throughput, and collision frequency. The

resulting recorded metrics are displayed to the user once the simulation run is complete.

Our case study used an object-oriented version of the CSMA/CD simulation
software. The software was revised from its original form to improve its testability.35
See Figure C-1 in Appendix C for a class diagram of the object-oriented version of the
software.

2. JUnit Framework

JUnit is an open-source, regression-testing3¢ framework written by Erich Gamma
and Kent Beck [50]. The framework provides an infrastructure for rapidly building test
cases and test suites for an application. More importantly, it allows for the automatic
execution of test cases during unit-, integration-, and regression testing. This lightweight
mechanism supports an incremental process of rapid software design and development, as
proposed in the Extreme Programming methodology [51]. See Figure C-2 for a high-

level class diagram of the JUnit Framework.

The JUnit framework supported our unit- and integration-testing for the
CSMA/CD simulation software. A JUnit test suite yields a composite structure that
facilitates the development of large, complicated test suites. For instance, a test suite can

itself consist of many test cases, or it can contain other test suites. In other words, a test

35 The CSMA/CD software was an assigned software-testing project for a Naval Postgraduate School
(NPS) Software Engineering course, SW4540: Software Testing.

36 Regression testing refers to the selective retesting of software components. This is primarily to
ensure that any recent software changes haven’t adversely affected those components [27].

54

suite can be composed of both test cases and test suites. In addition, the framework is

geared toward executing these test suites in an automatic and repeatable manner.

JU JUnit =] E3
JUnit

Test class name:

|csma.client.PacketQueueTem |v|| || Run |

[Reload classes every run

! U
Huns: Errors: Failures:
616 0 0

= junitframewwork. TestSuite @621 0
gqueueSingleElementToGiueaue

gqueueSeveralElementsToGueue i
gqueuekullElementToGueue =
dequeueSingleElementFromEmptyQueue

[¥ Failures | £ Test Hierarchy |

1] L]

lFinished: 0.22 seconds Exit

Figure 8. JUnit GUI

The JUnit GUI shown in Figure 8 allows testers to select test suites, execute test
cases, and view test results. The progress status bar shown in the GUI graphically
displays the percentage of tests completed during testing. If all of the tests within the test
suite execute without error, the progress status bar turns green. Otherwise, the progress
status bar turns (and remains) red to indicate that a test error has occurred.

3. CSMA/CD Test Suites

Five test suites were generated to test the CSMA/CD simulation software at the
method- and class-level. The current set of test suites include the following:
NetworkSimulationMainTest, PacketQueueTest, StationTest, NetworkEventManagerTest,
and NetworkTest. Each test suite consists of test cases that exercise various classes in the

CSMA/CD simulation software. For instance, the NetworkEventManagerTest test suite

55

utilizes test cases that specifically evaluate method and class behavior of the

NetworkEventManager class. See Figure C-3 for a class diagram of the test suites.

More general test suite descriptions are given in the following table.

Test Suite

Description

NetworkSimulationMainTest

This test suite provides test cases for exercising the network configuration
property file feature of the CSMA/CD LAN Simulation Software. This
feature allows the user to input network configuration parameters to be
applied to the network simulation without recompilation. In short, different
test property files will be read by each test case to determine the robustness
of this parameter input mechanism. Hence, to help assess how the
CSMA/CD software responds to erroneous input, the test property files

used in this test suite will be corrupted or contain corrupted configuration

values.

PacketQueueTest This test suite provides test cases as generated from the Quasi-Modal Test
Design Pattern [27], which is appropriate since the PacketQueue class
implements a queue data type.3”

StationTest This test suite provides test cases that test the station’s usage of the

PacketQueueTest. Some test cases from the PacketQueueTest Test Suite
will be duplicated here. Also, it is the Station class that restricts and

enforces the capacity for the PacketQueue class.

NetworkEventManagerTest

This test suite provides test cases for testing the NetworkEventManager
class. Most of the methods are simple set and get methods that are trivial to
test. Other methods such as getNextPendingEvent and

getAllSimilarEvents WithSameTime are not so trivial and require some
preparation to setup. Due to the importance of the latter methods, the tests

will be executed a number of times using randomly generated test data.

NetworkTest

This test suite provides test cases that process various network events, such
as Arrival, Departure, and Collision. By using a NetworkEventManager
instance, each test case will designate an event to be processed next. The
test case passes if it determines that the Network instance (through a single

simulation run) has processed the designated event.

Table 1. Test Suite Descriptions

37 The quasi-modal class test pattern is used to test classes whose constraints on message sequence
depends on a class’ particular state [27].

56

4. CSMA/CD Test Cases

A subset of test cases was selected from each of the test suites to avoid

documenting redundant cases. The following tables provide brief descriptions of all the

test cases used in this case study.

#

Test Case Description

01

withinRangeNetworkParameters | Parameters with valid values are read from a configuration file
into the program via the NetworkSimulationMain class. It will

be verified that the program has accepted these parameters.

02

outOfRangeNetworkParameters | Parameters with invalid values are read from a configuration file
into the program via the NetworkSimulationMain class. It will
be verified that the program has not accepted these parameters

and that default values are used instead.

03

missingNetworkParameters Parameters with invalid values are read from a configuration file
into the program via the NetworkSimulationMain class. It will
be verified that the program has not accepted these parameters

and that default values are used instead.

Table 2. "NetworkSimulationMainTest" Test Cases

57

Test Case

Description

01

queueSingleElementToQueue

A packet is queued to the PacketQueue instance. It

will be verified that a packet has been stored.

02

queueSeveralElementsToQueue

Several packets are queued to the PacketQueue
instance. It will be verified that the packets have been

stored.

05

queueSingleElementToNonEmptyQueue

A packet is dequeued from a pre-loaded PacketQueue
instance. It will be verified that a dequeued packet is

the same packet that was queued beforehand.

06

queueSeveralElementsToNonEmptyQueue

Several packets are dequeued from a pre-loaded
PacketQueue instance. It will be verified that the
dequeued packets were the exact packets that were

queued beforehand.

Table 3. ""PacketQueueTest" Test Cases

58

Test Case

Description

04

queueSingleElementToFullCapacityQueue

A packet is queued to a Station instance with a full
queue. It will be verified that an overflow

exception has been thrown.

05

queueSeveralElementsToNonEmptyQueue

A station’s buffer is filled to its maximum number
of elements. It will be verified that the station’s
buffer has reached the maximum number of

elements.

06

queueSeveralElementsToNearCapacityQueue

Several packets are queued to a Station instance at
near full capacity. It will be verified that an

overflow exception has been thrown.

10

dequeueSingleElementFromNonEmptyQueue

A packet is queued and immediately dequeued
from a Station instance. It will be verified that the
dequeued packet is the same packet that was

queued beforehand.

12

testStationSetAndGetldMethods

The station ID will be set via the setID method. It
will be verified that the ID returned from the get/D

method is the same ID that was set beforehand.

Table 4. "StationTest" Test Cases

59

Test Case

Description

01

testSetAndGetEventTimeMethods

It will be verified that various set and get methods of the
NetworkEventManager class are operating correctly. For
instance, the value returned from the get method should
match the same value that was set beforehand with the

corresponding set method.

02

testSetAndClearEventTimeMethods

It will be verified that the clear methods of the
NetworkEventManager class are operating correctly. For
instance, a clearArrivalEventTime invocation should reset
the eventTime of the Event instance corresponding to an

Arrival event.

03

testGetEventWithSmallestTimeMethod | 1t will be verified that the getNextPendingEvent method of

the NetworkEventManager class is operating correctly.
More specifically, the getNextPendingEvent method
should return the Event instance with the smallest event

time.

Table 5. "NetworkEventManagerTest'" Test Cases

Test Case

Description

01

verifyProcessingOfArrivalEvent

The NetworkEventManager is configured so that an Arrival
event will have the lowest time. It will be verified that the

Network instance has processed the correct Arrival event.

02

verifyProcessingOfTransAttEvent

The NetworkEventManager is configured so that a
TransmissionAttempt event will have the lowest time. It will
be verified that the Network instance has processed the correct

TransmissionAttempt event.

03

verifyProcessingOfCollChkEvent

The NetworkEventManager is configured so that a
CollisionCheck event will have the lowest time. It will be
verified that the Network instance has processed the correct

CollisionCheck event.

05

testRhoGreaterThanOneException

It will be verified that a defined arrival rate value of 200.0 will

calculate a rhio value over 1.0, thus invoking an exception.

Table 6. ""NetworkTest" Test Cases

60

5. Employing Fault-Injection

Ju JUnit = [=] E3
Junit

Test class name:

SimpleTest vl « |[Run |

[v] Reload classes every run

l U
Runs: Errors: Failures:
1919 O 0

outofRangeMetwarkParametars
missingMetwarkParametars
gueuesingleElementToGueaue
gueueSeveralElementsToGueue
dequeueSingleElementFromionEmptyGlueue

SIID

1] | ¥

IFinished: 1.1 seconds Exit

Figure 9. SimpleTest — Tests All Passed

For convenience, all of the test cases described in the previous tables were placed
in a single specialized test suite called SimpleTest. Figure 9 pictures a JUnit GUI
screenshot showing the completed execution of the SimpleTest test suite. Notice in the
screenshot that all of the test cases have passed. (In Figure 9, recall that the progress bar
is colored green to denote that all tests has passed.) This should be the case since the

software has already been subjected to as series of testing iterations in a previous study.38

For the purposes of this case study, program faults were injected using SIMPLE
to verify the “correctness” of the test cases. The fault will depend on the test case being
evaluated. (For example, programmer errors relevant to a Stack data structure would
relate to erroneous handling of underflow and overflow scenarios.) Of course, the

intention of the fault is to force a program error or failure. As noted earlier, if a test case

38 As mentioned previously, the CSMA/CD software was an assigned software-testing project for a
Naval Postgraduate School (NPS) Software Engineering course, SW4540: Sofiware Testing.

61

fails to report the program error, then the test case itself is faulty and not suited for unit
testing. If this happens, then SIMPLE has exposed a problem with the prior test process.
Furthermore, this indicates a lack of integrity of any testing conducted previously on the
SUT. However, in the real world, if caught early enough in the pre-testing phase, then the
mistake might be easily remedied without affecting the project budget. At this stage,
bugs would not be deeply ingrained in the early development effort, hence they are easy
to fix. Bugs found at later development stages tend to be propagated from earlier stages

and become deeply entrenched into the software build; these bugs are much more

difficult to fix.

The following tables summarize the type of faults that were injected into each of
the documented test cases. In each instance, typical software bugs that could conceivably
occur during development were simulated. Appendix D-1 lists the contents of the fault

configuration file used in this case study.

Test Case Fault

01 | withinRangeNetworkParameters | Corrupt an arbitrary parameter so that it is different than what is
expected. This error implies a problem within the

NetworkSimulationMain class.

02 | outOfRangeNetworkParameters | Corrupt an arbitrary parameter so that it is different than what is
expected. This error implies a problem within the

NetworkSimulationMain class.

03 missingNetworkParameters Corrupt an arbitrary parameter so that it is different than what is
expected. This error implies a problem within the

NetworkSimulationMain class.

Table 7. "NetworkSimulationMainTest'" Faults

62

Test Case

Fault

01

queueSingleElementToQueue

Corrupt the incoming packet so that packet will not be
queued. This error implies that a problem exists in

either the Packet or the PacketQueue class.

02

queueSeveralElementsToQueue

Queue fewer packets than what is originally intended.
This error implies that a problem exists in the

PacketQueue class.

05

queueSingleElement ToNonEmptyQueue

Change attributes of dequeued packet to values not
expected by the test. This error implies that a problem

exists in either the Packet or PacketQueue class.

06

queueSeveralElementsToNonEmptyQueue

Change attributes of dequeued packet to values not
expected by the test. This error implies that a problem

exists in either the Packet or PacketQueue class.

Table 8. "PacketQueueTest" Faults

63

Test Case

Fault

04 queueSingleElementToFullCapacityQueue Change the maximum packet setting for the
station’s packet queue so that an overflow does not
occur. This error implies that a problem exists in
the PacketQueue class.

05 queueSeveralElementsToNonEmptyQueue Change the maximum packet setting for the
station’s packet queue so that queue is not filled to
the maximum. This error implies that a problem
exists in the PacketQueue class.

06 | queueSeveralElementsToNearCapacityQueue | Change the maximum packet setting for the
station’s packet queue so that an overflow does not
occur. This error implies that a problem exists in
the PacketQueue class.

10 | dequeueSingleElementFromNonEmptyQueue | Corrupt the attributes of dequeued packet. This
error implies that a problem exists in the Packet
class.

12 testStationSetAndGetldMethods Corrupt the attributes of the Station instance. This
error implies that a problem exists in the Station
class.

Table 9. "StationTest" Faults
Test Case Fault

01 testSetAndGetEventTimeMethods Corrupt the value retrieved from a get method so that it is
different than what is expected. This error implies a
problem within the NetworkEventManager class.

02 testSetAndClearEventTimeMethods | Corrupt the value retrieved from a get method so that it is
different than what is expected. This error implies a
problem within the NetworkEventManager class.

03 | testGetEventWithSmallestTimeMethod | Corrupt the value retrieved from a get method so that it is

different than what is expected. This error implies a

problem within the NetworkEventManager class.

Table 10. "NetworkEventManagerTest" Faults

64

Test Case

Fault

01

verifyProcessingOfArrivalEvent

Modify program to always indicate that an Arrival event was
never processed. This error implies a problem within the

Network class.

02

verifyProcessingOf TransAttEvent

Modify program state to always indicate that a
TransmissionAttempt event was never processed. This error

implies a problem within the Network class.

03

verifyProcessingOfCollChkEvent

Modify program state to always indicate that a CollisionCheck
event was never processed. This error implies a problem

within the Network class.

05

testRhoGreater ThanOneException

Modify the arrival rate value so that it calculates a 7o value
less than one. This error implies that a problem exists within

the Network class.

Table 11. "NetworkTest'" Faults

65

6. Results

JU JUnit IS =] E3
Junit

Test class name:

'SimpleTest v/ = |[Run |

[v] Reload classes every run

—— . T

Runs: Errors: Failures:
1919 0 19

X tastGetEvertwithSmallestTimenethod 1‘ Run
X verityProcessingOfArrivalEvent

X verifyProcessingOfTransAttEvent
X verifyProcessingOfC ollChkEvent]
X testRhoGreaterThanOneException -

[¥ Failures l J& Test Hierarchy |

junitframewark AsserionFailedErrar: Comparing numoOfRuns expected: =)=
at cama.app MetwarkSimulationtainTest withinRangek etwarkParamete
at sun.reflect MativemethodAccessorimplinvoke0{M ative Method)

at sun.reflect MativeMethodAccessorimplinvoke(MativeMethodAccessorl
at sun reflect. DelegatinaMethodAccessorimplinvoke(DelegatingmethodA E
[]

|Finished: 17.63 seconds Exit

Figure 10. SimpleTest — Tests All Failed

Figure 10 shows a completed test run of the SimpleTest test suite. When
triggered, SIMPLE injects the aforementioned faults during each test case execution
within the JUnit GUL. As indicated in the figure, all of the test cases have failed. (In
Figure 10, the progress bar is colored red to denote that tests have failed.) Thus, the test
cases were sensitive enough to catch the injected errors.

7. Discussion

As demonstrated, SIMPLE can be used as a vehicle to judge test-case adequacy.
Unfortunately, “test-case” testing suffers from some of the same problems currently
plaguing software testing. That is, how extensive do you test your test cases? What real-
world faults do you choose to inject? How many of them do you inject? Since mutation
testing generates an enormous number of mutant programs, which mutant programs do
you actually consider during testing? How do you determine criteria for completion?

More importantly, what criteria do you use for determining test-adequacy?
66

For simple unit-level test cases, these questions may not be too difficult to
address. For example, in our CSMA/CD case study, fault injection was able to verify our
unit test cases due the simple nature of our test cases. That is, the criteria for test case
verification were made trivial due to test case simplicity. On the other hand, the
aforementioned questions become less obvious for testing strategies that incorporate
multiple software component interactions. For example, verifying integration- and
system-level test cases would not be trivial. Depending on the implementation, higher-
level test cases can be much more involved, complex, and sophisticated than unit-level
test cases. In addition, the individual software components that were rigorously tested
via unit-level test cases will not guarantee that correctness will be shown in integration-
or system-level testing. Recall that the anti-decomposition axiom in [27] tells us “... a
test suite that covers a class or a method does not necessarily cover the server objects of
that class or method.” Thus, a different criterion for test case adequacy is required for
various types of testing strategies. Verifying these test cases would probably be just as
involved as testing the software itself. These issues are beyond the scope of this thesis.

These issues have been addressed to some extent in [52, 53, 54].

In summary, it is not our intent to propose a complete test-case verification
process in this case study. Rather, we seek to illustrate how a fault-injection engine, such
as SIMPLE, could be used to conceivably develop such a process.

C. CASE STUDY II: UNCOVERING SOFTWARE ANOMALIES USING
SIMPLE

SIMPLE can facilitate software development by serving as a specialized
debugging tool that offers fault-injection capabilities. Its premise is straightforward and
concise: Inject faults into functional components of the software, and evaluate its
resulting responses (or lack thereof) for correctness. For example, faults are forced into
the software in an attempt to expose other faults. Hence, in this respect, the notion of
fault-acceleration is subscribed into our test process. This section discusses some of the
faults that were injected into the ARS via SIMPLE for determining robustness and fault

resiliency.

This case study illustrates how faults were injected into exception-handling code.

The motivation for this type of testing resulted from the fact that the original ARS test
67

plan did not contain any procedures that exercised the ARS fault-tolerance mechanisms.
Thus, SIMPLE was used to force difficult-to-reach program paths such as exception-
handling code [10].

In order to determine software resiliency, we later discusses how SIMPLE
simulates a time-consuming task within the ARS. Additionally, the effect this fault has
on the ARS is also discussed.

1. The Airline Reservation System (ARS) Software Description

The ARS is primarily a GUI-driven, database application for managing flight,
customer, reservation, and cancellation data.3® The system was specifically designed for
travel agents and flight managers. The relational database is an integral part of the ARS

because it stores the persistent information of the ARS.

The ARS responds to data requests from the travel agent or flight manager by
displaying the requested data to the screen. An ARS GUI is tailored according to the
defined role of the current system user: travel agent or flight manager. (The role of the
user is authenticated during ARS login.) When inputs to the ARS are invalid, the user
will be notified of the error. The ARS assigns specific operational functions to each user.
For example, the ARS allows the travel agent to request flight information and make a
reservation. Ifa reserved flight has been modified, the travel agent may decide to cancel
reservations on the modified flight. The flight manager is exclusively allowed to add,
delete, or modify flights. The flight manager may delete an entire flight, even if there are
existing reservations. The ARS will notify the travel agent when a customer’s
reservation has been affected. The ARS restricts some modifications the flight manager
may make. For example, the flight manager may not “bump” off customers from a flight
by reducing the number of seats to a value that is less than the current number of flight
reservations. If the flight manager modifies the fare of a flight, previously made
reservations will not be affected. The ARS will generate an E-ticket number for each

reservation made.

See Figure C-4 for a class diagram of the ARS System.

39 The ARS software was another assigned project for a Naval Postgraduate School (NPS) Software
Engineering course, SW3460: Software Methodologies.

68

2. Testing the ARS Exception-Handling Capabilities

During software testing conducted well prior to this case study, the execution of
the ARS test plan uncovered a myriad of software bugs in the operational setting.
Unfortunately, the test plan focused on program correctness in an ideal operating
environment, one that is free of external errors, for example. As a result, no test
procedures were generated for exercising ARS exception-handling code. In retrospect,
creating a specialized test scenario that would trigger an exception at the appropriate
times would have been extremely difficult. As it pertains to the ARS, the exception-
handling mechanisms are “hidden” and thus inaccessible for testing. Improving the
testability of these regions would have necessitated an intensive programming effort.
SIMPLE illustrates that this need not be the case by demonstrating an effective fault-
injection approach on an essential ARS software component: the DatabaseManager

class.

The DatabaseManager class is considered the heart of the ARS software. It
encompasses integral relational database operations used for processing flight, customer,
ticket, and reservation records. Typical database operations include querying, storing,
retrieving, deleting and modifying dataset records. Due to their importance, these
operations were extensively tested in the ARS test plan. Unfortunately, as already
mentioned, previous testing did not consider its exception-handling capabilities. Thus, to
illustrate how SIMPLE can access exception-handling code, SIMPLE forced an

exception to occur within critical regions of selected DatabaseManager class methods.

69

131

132~

133 * Returns the results from the database based on the specified query.
134 * @param query The query to send to the SOL Database.

135 * @returns ResultSet The Results fromt the gquery

136 =

137 private static ResultSet executeQuery(String query)
138 |

139 ResultSet result = null;

140 try

i i

142 result = arsDBStaternent. executeQuery{guery);
143 }

144 catch (Exception g)

145 i

146 Systern.out. println("executeQuery " + e.gethessage(]);
147 }

148 return result;

149 1

180

151

152 * Executes an update SOL query.
153 * @param query The query to send to the SOL Database.
154 * @returns boolean success/ail of execution

155 =

186 private static boolean executeUpdate(String guery)
157 |

158 try

159 i

160 arsDBStaterment. executellpdate(guery);

161 }

162 catch (Exception g)

163 i

164 Systern.out. printin("executelpdate " + e.getMessage());
165 return false;

166 }

167 return true;

168 1

169

Figure 11. ARS Source Code Snippet

Figure 11 shows a source listing for two very important methods of the
DatabaseManager class, executeQuery and executeUpdate. Basically, these methods are
responsible for managing and processing data in the ARS database. In executeQuery,
database results are returned (line 148) based on system-specified queries that are
executed (line 142). In executeUpdate, a boolean value is returned (lines 165, 167)

depending on the success or failure of the executed query (line 160).

70

&

= E
System
Flight Manager
Flight# Depart Date | Depar Time | Depart City | Artive Date | Arrive Time | Artive Cmr_l Mum of Seats | Fare |
AA1235 1212711989 0go0 SFC 1212711985 0300 SAN 10 120.00 -
BM1231 12/2211999 ngao SAN 12/2211989 0gao LA 100 120.00
CA1004 1212471889 0800 SFO 1212471889 0300 SAN 100 235.00
51234 1212171989 0800 SAN 12/21/1989 0300 LA 100 450.00
RT1233 12/23/1389 0g00 SFC 12/23/1359 0300 SAN 100 121.00
CA2344 1212511989 0go0 SFC 1212511985 0300 SAN 10 120.00

1]

| add | modiiy | pelete |

Figure 12. Flight Manager GUI

In particular, the executeQuery method is extensively used in the Flight Manager

GUI shown in Figure 12. Via this method, the Flight Manager GUI automatically

retrieves flight information records from the relational database and displays them in a

tabular form. In addition, the GUI allows for flight information to be updated using the
Add, Modify, and Delete buttons.

71

=10

Make Reservation

Departure Date Departure Airport | *** ~ | arrival airport |+ ~|
Flight#® | DepartDate | DepanTime | DewartCite | Arive Date | AmiveTime | Ariye City | Avail Nurm of .| Fare |

aaiz3s fonznass neoo | 20.

BM1231 aoo__

~ Name: |NeiIAcantiIad0 |

CAI004 8OO .
g‘%‘?;ﬁ; ggg __ Address: [123 Main Street |
cazsis GB0s Gt [5anDiego | state:[ca + ||

Phone: |123-4567

Email: |nacanti|@emai|.c0m |
| appy || cancal || close |
|
| Query || Make Reservation |

Figure 13. Travel Agent Reservation GUI with Reservation Dialog Box

The executeUpdate method, on the other hand, is extensively used in the Travel
Agent Reservation Dialog Window GUI, shown in the foreground of Figure 13. (The
GUI shown in the background of Figure 13 is the Travel Agent Reservation GUI. The
Dialog Window GUI appears in the Travel Agent Reservation GUI when a flight is
selected from the table and the Make Reservation button is pressed.) Through this
method, the Dialog Window GUI creates flight reservations for the ARS system and is
immediately submitted (i.e., stored into the database) when the Apply button is pressed.

Both executeQuery and executeUpdate methods utilize standard JDBC40
constructs, such as Statement and ResultSet, for querying, retrieving, and affecting
database information. Of primary interest, however, are the error-handling regions of
these methods (lines 144-147 and lines 162-166 in Figure 11.) To evaluate their
effectiveness against failure, SIMPLE was used to inject variable-corruption faults to

invoke exceptions within these methods during run-time.

40 The JIDBC, which stands for Java Database Connectivity, provides Java API to access tabular data
from virtually any data-source, such as a relational databases or spreadsheets. See [70] for more
information.

72

In order to execute lines 144-147 in executeQuery, a failure has to occur on line
142 to raise an exception. Similarly, to execute lines 162-166 in executeUpdate, a failure
on line 160 has to occur to trigger an exception. Consequently, the construct used in both
lines 142 and 160 is the arsDBStatement variable, which is an instance of the JDBC
Statement class. In each case, this variable was purposely “nullified” (i.e., set to null) via
SIMPLE to forcefully execute the aforementioned lines of code. Appendix D-2 lists the
contents of the fault configuration file used in this particular test. Again, exercising these
exception calls without SIMPLE would be very difficult. In addition, it would most
likely require modifications to the source code (i.e., increasing testability) to test for

exception-handling. This may prove to be expensive and time-consuming.

o=

B

System

DatabazeManager: querpAllFlights

Exception: null

Figure 14. The Flight Manager GUI Session with Injected Fault

Figure 14 shows the Flight Manager GUI alerting the flight manager that an
exception was raised. This is in response to the variable-corruption fault injected by
SIMPLE in the executeQuery method. As a result, no flight information was retrieved.
While the alert window notified the operator of the ensuing database error, it does not

identify the cause of the fault. Despite this, the Flight Manager GUI responded correctly

73

to the encountered fault. In the future, the ARS developers may want to redesign the alert

to contain more specific detail concerning the encountered error.

=10

System
| Make Reservation |
Departure Date Departure Airport | *** ~ | arrival airport |+ ~|
Flight#® | DepartDate | DepadTime | DewartCitv | Arive Date | AmiveTime | Ariye City | Avail Nurm of .|
AA1235 (122711999 0800 [1| B 5
BM1231 |12/221888 | : :
CA1004 2/24/1999 “Name: [l Acaniado R
SWU1234 213111893 _ Address:|123 Main Street |
RT1233 2731669

Gt [SanDiego | state:|ca v ||
Phone: |123-1234

Email: |nacanti|@emai|.c0m |

[tarzsiess Joson

| Apply || cancel || Close |

ETicket#: 000000010

1]

| Query || Make Reservation |

Figure 15. A Travel Agent Reservation GUI Session with Injected Fault

On the other hand, the effect of the fault that was inserted into executeUpdate did
not appear in the Travel Agent Reservation GUI. Despite the presence of this fault,
Figure 15 shows the top-level Travel Agent Reservation GUI after a reservation has been
committed via the Travel Agent Reservation Dialog Window GUI. Unfortunately, the
GUI failed to indicate that a fault occurred. In fact, despite the fault, the system
erroneously generated an E-Ticket number, as shown in the E-Ticket# field. (In other
words, instead of reporting an error-message, the GUI indicates that no problems have
been encountered.) Hence, in this case, it is not apparent what the total effect the fault

had on the ARS system.

74

&

System

r Alerts r Cancel Reservation r Make Reservation |

Flight# (ccdddd) Date(mmiddinyy) E-Ticket #

=)]

Marne | Address | Phone# | Emaill | Flight® | DeparDate | Fare | E-Ticket® |TravelAgenth. |
John Doe 816 Tree Lan... [262-7348 doe@home.c... [RT1233 120231999 121.00 anooooond ta -
Sally Mitchel G816 Oakiree... |855-1234 smitchel@ex.. |CAZ2344 1212511999 120.00 aoanononz ta
Bob Simpson 1234 Terrace .. |731-13448 hobigghello.edu|BM1231 12/32119949 120.00 aoanonon3 ta
Sue Simpson |1234 Terrace ..|731-1345 sue@hello.edu|BMN1231 1272211994 120.00 oonoooon4 ta
hary Ann q997 Park Av.. [123-6543 maryag@yaho... [Svi1234 12/21/1933 [450.00 0oooooons — Jta

| Query | | Delete Reservation |

Figure 16. Reservations in the Travel Agent Reservation GUI.

Figure 16 shows a Travel Agent Reservation GUI screen displaying recorded

reservations in the ARS database. Note that the reservation for “Neil Acantilado” does

not exist, even though one apparently was created in the previous step (See Figure 15).

Hence, SIMPLE exposed a flaw in the ARS system by applying fault injection in the

executeUpdate method.

165

166

167

168

169

170

171

172

173

174

175 !
176 1
177

/f et ETicketMumber

DatabaseManager. prepareF orMewBlockTransaction(];
String eTicketMumber = DatabaseManager. generateETicketMurmber();

customerinfo. setETicketMumber(eTicketMumber);

eTicketTextField setText(eTicketMumber);

DatabaseManager. prepareF orMewBlockTransaction(];

DatabaseManager.insert{customerlinfo);

Figure 17. Software Bug in the Travel Agent Reservation GUI Code

On further investigation, the bug occurred because the Travel Agent GUI code

ignores the return value of the DatabaseManager insert method (shown in line 174 in

Figure 17). The insert method internally uses the executeUpdate method and propagates

75

its boolean return value (More precisely, the insert method is a convenience method that
“wraps” the executeUpdate method.) A fix would entail evaluating the boolean returned
from the DatabaseManager insert method on line 174. If true, then the database update
operation was carried out successfully. If false, then the database update operation failed
and an error-message should be generated as a result. Figure 18 shows template solution

(lines 175 through 180).

165
166 A Get ETicketMumber
167 DatabaseManager. prepareF orMewBlockTransaction),
168 String eTicketMumber = Databasehanager. generateETicketMumber();
169
170 customerlnfo. setETicketMumber(eTicketMumber);
171 eTicketTextField setText(eTicketMumber);
172
173 DatabaseManager. prepareForiewBlockTransaction();
174
175 i Check far success/failure ...
176 if (IDatabasehanager.insert(customerlinfa))
177
178 # Do something here to alert the user that something
179 # bad has happened during a database insert ...
180 !
181 }
Figure 18. Template Fix
3. Assessing GUI Performance via Fault-Acceleration

SIMPLE was used to invoke the effects of a time-consuming task on the ARS
system. In this manner, we implement the notion of fault-acceleration where the failure
rate of a component is accelerated via fault-injection. (This, in turn, allows for thorough
testing to be conducted in a controlled environment within a limited time-frame [7].)
Specifically, SIMPLE simulated a database operation that retrieves a large volume of
ARS data. (How SIMPLE simulates this is explained below.) This afforded us the
ability to analyze GUI performance and determine if the “GUI-freezing” phenomenon

[55] is a problem in the ARS.

Rather than populating the database with massive, arbitrary ARS database
records, SIMPLE injected a delay fault in one of the more critical DatabaseManager
methods. Recall that SIMPLE is capable of injecting delay faults via a byte-code pre-

instrumentation feature.

76

&

5] x]
System
rnlerts rCanceI Reservation rMake Reservation |
Departure Date Departure Airport | *** ~ | arrival airport |+ ~|
Flight#® | DepartDate | DepadTime | DepartCity | AriveDate | AmiveTime | Arive City | Avail Nurm of .| Fare |
1235 12/27/1999 |0800 SFO 12/27/1999 |0900 SAN 10 120.00
EM1231 120221999 |0800 SAN 1242211999 |0800 LAY a8 120.00
CATO04 12/24/1999 |0800 SFO 12/24/1999 |0900 SAN 100 235.00
SW1234 12/21/1999 |0800 SAN 12/21/1999 |0900 LAX g9 450.00
RT1233 12/23/1999 |0800 SFO 12/73/1999 (0800 SAN a9 121.00
CA2344 12/25/1999 |0800 SFO 12/25/1999 |0800 SAN F] 120.00
| Query || Make Reservation |

Figure 19. The Travel Agent Reservation GUI

In particular, the effect of the delay fault was examined in the Travel Agent

Reservation GUI, shown in Figure 19. Appendix D-3 lists the contents of the fault

configuration file used in this particular test. The Travel Agent Reservation GUI allows

the travel agent to selectively filter and query flights to display. In short, system users

retrieve flights via the “Query” button, based on the “Departure Date,” “Departure

Airport,” and “Arrival Airport” fields. Due to its query operations, this GUI is ideal for

examining GUI-related defects, such as “GUI-freezing.”

040
a9
gl
a61
o5z
863
864
865
B6E
867
(ot
alale
g7l
g7 1
972

}

}

newFlightinfo. sethumOfSeats(numOfSeats);

newFlightinfo. setAvailNumOfSeats(availlMumOfSeats);

newFlightinfo. setFare(airF arel;

vector. addinewFlightlnfal;

}

catch (Exception e)

{

System.out.printin("gquery = " + e.getMessagel]);
debug(e. getMessage(), "queryFlightinfa{Flightinfo)™);

result = null;
return wector,

Figure 20. Partial Listing of the Insert Method.

77

SIMPLE injected a delay fault into the insert method of the DatabaseManager
class. Figure 20 shows a partial source listing. The fault was placed on line 870, right
before the return statement. Hence, a delay occurred each time a query action is invoked
within the Travel Agent Reservation GUI. This created the appropriate conditions to

evaluate GUI defects.

& M=
System
r Alerts r Cancel Reservation r Make Reservation |

Departure Date Departure Airport | ~ | arrival airport | |

Flight#® | DepartDate | DepadTime | DepartCity | AriveDate | AmiveTime | Arive City | Avail Nurm of .| Fare |

| Query || Make Reservation |

Figure 21. A "Frozen" Travel Agent Reservation GUI

Figure 21 shows the Travel Agent Reservation GUI in a “frozen” state as a result
of the delay fault. Keep in mind that this is simulating a mass retrieval of information
from the database. Notice the absence of a visual indicator that informs the operator that
a database retrieval operation is currently underway. This is a serious GUI design flaw.
(In fact, an excellent treatment of this and other similar GUI design flaws is given in
[55].) Basically, the problem here is that the (simulated) database retrieval operation is
not executed in a separate background thread. Thus, this adversely affects the ARS since
it has to wait until the retrieval task is completed before processing other system events.
In Figure 21, the GUI is in a “locked” state since it is waiting for the forced delay to

complete. Hence, it remains unresponsive to user interaction. Unfortunately, the

78

operator may think that the ARS system has stopped functioning altogether. This could
lead to further operator errors. For instance, system inactivity may cause the operator to
repeatedly press GUI buttons to attempt to “unlock” the system from whatever state it is
trapped in. Unfortunately, these operator actions get queued in the GUI event-queue
thread to be processed later. Hence, after the delay has completed, the GUI event queue
will “unravel” and process each queued GUI event. This could lead to a series of
unintended database actions, such as random deletions of records. Furthermore, a
frustrated operator may prematurely “kill” the application by rebooting the machine.
This premature stoppage could seriously affect data integrity. To fix the problem, all
potentially time-consuming tasks should be spawned into their own background threads
where a dialog window or progress bar is displayed to the operator to indicate task status.

Thread solutions that address time-consuming tasks are provided in [56, 57, 58].

As a result, SIMPLE exposed a potentially serious flaw in the GUI design of the
ARS system through simulated fault acceleration. In other words, SIMPLE was able to
expose GUI defects without having to populate the ARS database with “dummy” data.

4. Discussion

Prior ARS testing using the original test procedures successfully uncovered a
multitude of software bugs. Unfortunately, due to the difficulty of reaching particular
program paths, such as exception handling, were not tested. This inability to perform
such paths could have had ramifications down the road had the software actually been
deployed in its intended operational environment. For example, recall that the Travel
Agent Reservation GUI surprisingly did not notify the operator of an underlying database
problem during the creation of a flight reservation. Thus, the unsuspecting travel agent
could conceivably enter multiple flight reservations before realizing that the reservations
were never stored in the database. Unfortunately, this could lead to loss of work, money,
and customers. Fortunately, SIMPLE uncovered this anomaly by forcing the execution
of previously inaccessible exception-handling statement block; this supports our assertion

that fault-injection tools should be used as complementary tools for software testing.

The preceding case study assumes developers easily have access to the

application source code. For instance, inserting various faults requires access to source

79

code since class names and line numbers are needed. However, today’s systems utilize
COTS technology as cost-saving measures. As a consequence, developers no longer can
inspect the underlying source code. Thus, proving software correctness becomes much
more complicated. Fortunately, black-box testing techniques and strategies can help

address some of these issues by testing at the system interface boundaries [27].

As an alternative approach, researchers are finding other methods to effectively
test COTS products. Rather than applying black-box testing to the application, one can
extend fault injection to include the operational environment of the application. For
example, one can inject faults into the operating system to assess applications that are
hosted on them, as was done in [1] for revealing anomalies in system behavior by COTS.

D. CASE STUDY III: INCREASING TEST COVERAGE

As with exhaustive testing, complete coverage testing is an intractable problem
[27]. We will not address the problem of exit criteria for coverage testing, but rather how
to facilitate this testing using fault-injection. One assertion we make is that SWFI tools
can test hidden, hard-to-reach code [10]. SIMPLE illustrated this concept in the previous
section. In this final case study, SIMPLE demonstrates how SWFI can increase test
coverage.

1. Coverage Metrics

Code coverage analysis is an effective test strategy for “mitigating” untested code.
Metrics generated from code coverage analysis can identify inaccessible code by
explicitly identifying code not covered by any execution test runs. Once uncovered code
is identified, specialized test stubs and drivers can then be implemented for them in order
to make these areas more accessible for testing (i.e., more testable.) More importantly,
coverage reports can disclose “blind spots” that the tests did not consider [27]. In effect,

code coverage plays an important role in evaluating test case adequacy.

As mentioned in Section B of Chapter II, SWFI provides testers and developers
with some exclusive benefits that are well suited for testing purposes. Code coverage is
one such benefit. For example, if code coverage is an important exit criteria for testing

completeness, then it can be shown that SIMPLE increases code coverage by executing

80

otherwise inaccessible regions of the software. To support this claim, an open-source
coverage tool called Gretel was used in conjunction with SIMPLE.

2. Gretel

Gretel [60] is an open-source, Java-based, test-coverage tool developed at the
University of Oregon. Unlike other coverage monitoring tools, Gretel implements
residual test coverage monitoring, which involves instrumenting specialized probes into
the application byte-code [59]. These probes record what statements were executed

during run-time.

The main feature of residual test coverage monitoring is that, during re-
instrumentation, instrumentation from those statements already executed are removed.
This is advantageous in that it minimizes execution overhead during a rerun of the
application. (For instance, statements already covered by Gretel in previous runs should
not be considered again in the next run. Hence, the instrumentation for those statements
are removed to avoid redundant coverage measurements.) This repeated re-
instrumentation process allows for various coverage measurements compiled over
various execution runs to be progressively amassed in an efficient manner. Also,
information on other third-party testing tools that incorporate Gretel can be found in [61]

and [62].

In short, Gretel's GUI allows testers to instrument and re-instrument selected files
(i.e., Java classes) and view their corresponding coverage results after execution.
Afterwards, a visualization of the source code is displayed using coverage color-codes to
mark each source statement: red indicates that a statement was not executed, while green
represents an executed statement.

3. Using Gretel with SIMPLE

To prove SIMPLE’s effectiveness in increasing code coverage, Gretel acquired

two coverages from two separate ARS execution runs.

81

& Groter =] 3

File Settings Help

Instrument

Step 1 - Choose files to instrument:

C:thesisideviSW3id6MarswlatabaseDatabaseManager.class

| Add files || Remove Selected || Clear List |

Step 2 - Specify directory to store auxillary tables in:

ChthesisideviSWiadBMarsidatabase | Browse

Step 3 - Click Here: | Instrument Selected Files |

Figure 22. Instrumenting with Gretel

In the first ARS run, Gretel initially instruments the DatabaseManager class,

which is a major ARS component. Figure 22 shows the specialized instrumentation GUI

provided by Gretel.
data, from the DatabaseManager.

Next, the ARS will invoke a database operation, query all flight

See Figure 23 below. Once invoked, Gretel will

capture coverage results for this operation. The ARS is then exited and prepared for the

next run.
System
! Make Reservation |
Departure Date Departure Airport | e - | Arrival Airport | i - |
Flight# | Depart Date | Depart Time | Depart City | Artive Date | Artive Time | Arrive City |Avai| Iurm of...| Fare
AM13235 12027019599 |og00 |SFO 1272711998 0800 |5AMN 10 |120.00
BN1231 [12/2211999 |0800 |SAN [12/22/1999 |0900 ||_A>< |98 [120.00
cA1004 |12524/15999 |0e00 |SFQ 1252451999 000 =T 100 |235.00
SW1234 11262111999 |0e00 =T 11252111999 000 (LA 199 |450.00
RT1233 11212311999 |0e00 |SFO 125231999 000 =R 199 [121.00
CAZ344 11212501999 0200 |SFO 121251999 000 =R 19 |120.00
| §Q_uer_y‘ | | Make Reservation |

Figure 23. Querying All Flight Data in ARS

82

The second run will be somewhat similar to the first run, except that SIMPLE will
inject a fault during execution. As in the first run, the ARS will invoke the same
DatabaseManager database operation that was invoked. More importantly, the fault will
exercise code uncovered by the results of the first test. Again, Gretel will capture
coverage results for the ARS session.

4. Assessing SIMPLE Coverage

At the end of the second run, Gretel additionally incorporated coverage results
from the first session. In other words, the coverage results from the second run actually
represent a progressive coverage gathered from both sessions. Thus, the difference
between both coverage sets will represent the increased coverage afforded by SIMPLE.

5. Results

In Figure 24, the Gretel coverage visualization tool shows the coverage results
obtained from the first coverage run of the ARS. According to the visualization tool,
lines 663 and 664 were never executed. Note in Figure 24 that lines 663 and 664 are
colored red to indicate they were not executed. More specifically, these lines house the

exception-handling code for this method.

83

& C:\thesis \dev\SW3460\ars \database\DatabaseManager. java

File View Colors

f2r
(28
(29
(30
631
(32

(o]

while (resuftnexti)
{
if fvectar == null
{
vector = new Flightvector();
]

flighthumber = (String) result getString{"FLIGHT_NUMBER");
departDate = (String) resuft getString(“DEPART_DATE");
departTime = (String) resuft getString(“DEPART _TIME");
departCity = (String) resultpetstring(“DEPART_CITY");
arriveDate = (String) resullgetString("ARRIVE_DATE");
arriveTime = (String) result getString(* ARRIVE_TIME");
arriveCity = (String) resuft.getString("ARRIVE_CITY");
num0OfSeats = (int) resuftgetint(“NUM_OF_SEATS");
availumOrseats = (int) resuft getint{"AVAIL_NUM_OF_SEATS"S;
airFare = (float) result.getHoat("FARE");

Flightinfo flightInfo = new HightInfo();
flighitinfa = new Hightinfo);
flightinfo.setFlightNumberfightNumber);
flightinfo.setDepartDate(denartDate);
flightinfo.setDepartTime(departTimej;
flightinfo.setDepartCity(epartCity);
flightinfo.setArriveDate(arriveDate);
flightinfo.setirriveTime(arriveTime);
flightinfo.setArriveCity(arriveCity;
flightinfo.sethumOfSeats(numofSeats);
flightinfo.sethvailNumOfSeats availNumOrSeats);
flightinfo.setFare(airFare);
vectar.add(flightinfo);

]

catch (Exception)

>

Figure 24. Session 1 Coverage Results

84

In the second coverage run, SIMPLE specifically injected a fault that exercised
previously untested portions of the code. In this case, SIMPLE nullified the result
variable located in line 628 to evoke a NullPointerException in the method. The
exception then triggered the code in lines 663 and 664. Appendix D-4 lists the contents

of the fault configuration file used in this case study.

As expected, the coverage results, shown in Figure 25, reveals that the exception
had indeed occurred and the exception-handling code was triggered. Note in Figure 25

that lines 663 and 664 are colored green to indicate that these lines were executed.

85

i C:\thesis \dev\SW3460\ars \database \DatabaseManager.java

vector = new Flightector()
}

flighthumber = (String) resutt.getString("FLIGHT_NUMBER";

}

}
catch (Exception g)

Figure 25. Session 2 Coverage Results

86

6. Discussion

Our final case study showed that SIMPLE improved test coverage. More
importantly, the case study also showed how a coverage-analysis tool could be used to
help direct and focus fault-injection testing. For instance, generated coverage reports can
identify untested code within the application, in addition to untested exception-handling
code. Hence, a coverage-analysis tool used in conjunction with a fault-injection test-
harness would be a very valuable resource for testing system-critical software where

maximal test coverage could be achieved via the abovementioned techniques.

Other test-coverage tools, such as JCover?!, can provide accurate statistical
coverage data that Gretel lacks. Such elaborate and sophisticated coverage data can be
further analyzed to assess test adequacy, for example. For a more elaborate approach to

assess test-adequacy using code-coverage metrics, see [10].

41 JCover is a code coverage analyzer for Java programs. See [63] for more details.

87

THIS PAGE INTENTIONALLY LEFT BLANK

88

VIII. CONCLUSION

Many of today’s industries utilize Java as the developmental platform for their
software. Much of Java’s popularity is attributed to its support for multi-processing,
concurrency, and rich APIs [71]. Thus, Java programming has been increasingly making
its way into mission- and safety-critical systems. These systems require industrial
strength software testing to ensure functional correctness. Unfortunately, weak testing
can have catastrophic consequences, such as the well-known Therac-25 [5] and Ariane-5

systems mishaps [66].

An ideal test scheme for testing complex systems is to provide complete test
coverage. However, it is impossible to investigate the entire input space of a system. As
an example described in [72] a system with 40 binary inputs has an input space of 2*° or
10'* combinations. Thus, at a rate of one test per millisecond, it would take 35 years to

test the system.

Traditionally, testers rely on pre-determined input distributions to test their
software. However, even the most intricate input distribution set cannot guarantee that the
software is correct. Part of the reason is that there could exist difficult-to-reach paths in

the program. For example, exception handling requires certain conditions for execution.

In contrast to exhaustively checking for faults, faults can be injected into the SUT.
The benefits of SWFI include fault acceleration, systematic testing and sensitivity

analysis support, COTS testing, and improved test coverage.

Many SWFI tools exist today [1, 16, 17, 18, 21, 22, 25, 26, 28, 32]. Of these tools,
many vary in their underlying SWFI technique, fault model, and usability. However, few
SWEFI tools exist today that are strictly Java-based. Thus, we proposed to develop our
own SWFI tool, SIMPLE, so that others can fully appreciate the benefits SWFI offers in

testing systems implemented in Java.

Ultimately, the associated risks with system applications lie in the hands of the
owners, maintainers, and users. Thus, the owners and maintainers need to carefully test

their systems for possible hazards and causal factors. Fortunately, existing SWFI tools,

&9

such as SIMPLE, can be used to mitigate these risks. We have described our design
process along with several case studies documenting the effectiveness of SIMPLE.
However, we stress that SIMPLE is just a prototype and should not be looked upon as the

“silver-bullet” against system anomalies.

Our case studies illustrated SIMPLE's potential for facilitating software testing.
First of all, the first case study showed how SIMPLE verified the sensitivity of the test
cases used for the CSMA/CD application. In other words, the system's test cases
adequately responded to the faults that were injected by SIMPLE. Secondly, the second
case study demonstrated how SIMPLE uncovered a weakness in the ARS system that the
test cases failed to discover from previous testing. Specifically, a SIMPLE-emulated
database error was not handled appropriately by the ARS system. Thus, causing
inconsistency in the system's stored data. Lastly, the third case study confirmed that
SIMPLE increased test-coverage. For instance, with the assistance of an open-source
coverage tool (i.e., Gretel [60]), we proved that SIMPLE could tap into the alternate

program paths and hard-to-reach source code such as exception handling.

90

o ® N A W

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

IX. LIST OF REFERENCES

Schmid, M., Ghosh, A., Hill, F.: Techniques for Evaluating the Robustness of Windows NT Software, Reliable
Software Technologies, 1999.

Johnson, D. W.: Java Technology in the Department of Defense, JavaOne Conference, 1999.
Voas, J.; McGraw, G.: Software Fault Injection; Inoculating Programs Against Errors, John Wiley & Sons, 1997.

Slabodkin, G.: Software Glitches Leave Navy Ship Dead In The Water, Government Computer News,
http://www.gen.com, July 13, 1998.

Leveson, N.; Turner, S.: An Investigation of the Therac-25 Accidents, IEEE Computer, 1993, pp. 18-41.
Voas, J.; Kassab, L.; Voas, L.: 4 “Crystal Ball” for Software Liability, IEEE, 1997.

Toress-Pomales, W.: Software Fault Tolerance: A Tutorial, NASA/TM-2000-2106, October 2000.
McDougall, P.: Microsofi Will Release APIs To Satisfy Mandates, InformationWeek, pp.20, August 12, 2002.

Shelton, C. P.; Koopman, P.; DeVale, K.: Robustness Testing of the Microsoft Win32 API, International
Conference on Dependable Systems and Networks, IEEE, 2000.

. Bieman, J. M.; Dreilinger, D.; Lin, Lijun: Using Fault Injection to Increase Software Test Coverage, Proceedings

of International Symposium on Software Reliability, ISSRE, 1996.

Voas, J.: Discovering Unknown Software Output Modes and Missing System Hazards, lecture at Naval
Postgraduate School, April 26, 2002.

Chiba, S.: Load-time Structural Reflection in Java, ECOOP 2000, Object-Oriented Programming, LNCS 1850,
Springer Verlag, pp. 313-336, 2000.

Welch, L; Stroud, R. J.: Kava — A Reflective Java based on Bytecode Rewriting, Proceedings of USENIX
Conference on Object-Oriented Technology, 2001.

Martins, E.; Rosa, A.: 4 Fault Injection Approach based on Reflective Programming, Proceedings of International
Conference on Dependable Systems and Networks (DSN), pg, 409, 2000.

Haddox, J.; Kapthammer, G.; Michael, Ph.D., C.C.; Schatz, M.: Testing Commercial-Off-The-Shelf With Software
Wrappers, Cigital, Inc.

Carreira, J.; Madeira, H.; Gabriel, M: Xception: Software Fault Injection and Monitoring in Processor Functional
Units, IEEE Transactions on Software Engineering, Vol.24, No.2, February 1998.

Dawson, S.; Jahanian, F.; Mitton, T.: ORCHESTRA: A Fault Injection Environment for Distributed Systems, 261
International Symposium on Fault Tolerant Computing (FTCS), 1996.

Stott, D.T.; Kalbarczyk, Z.; Iyer, R.K.: Using NFTAPE for Rapid Development of Automated Fault Injection
Experiments, 1999.

S. Ghosh, A.; Mathur, A. P.: Interface Mutation, Journal of Testing, Verification and Reliability, pp 227-247,
Volume 11, Issue 4, December 2001.

Hseuh, M.; Sai, T.K.; Iyer, R.K.: Fault Injection Techniques and Tools., IEEE, 1997.

Aidemark, J.; Vinter, J.; Folkesson, P.; Karlsson, J.: GOOFI: Generic Object-Oriented Fault Injection Tool. The
International Conference on Dependable Systems and Networks (DSN), July 2001.

Han, S.; Rosenberg, H.A.; Shin, K.G.: DOCTOR: An Integrated Sofiware Fault Injection Environment, Proc. of
IEEE International Computer Performance and Dependability Symposium, April 1995.

W. Du, W.; Mathur, A.P.: Vulnerability Testing of Software System Using Fault Injection. Technical Report Coast
TRI98 -02, Department of Computer Science, Purdue University, 1998.

Ghosh, A.K, Voas, J.: Inoculating Software For Survivability, Communications of the ACM, Volume 42, Issue 7,
pp- 38-44, July 1999.

Stott, D.T.; Floering, B.; Kalbarczyk, Z.; Ravishankar, K. I.: 4 Framework for Assessing Dependability in
Distributed Systems with Lightweight Fault Injectors, Proceedings of the 4th International Computer Performance
and Dependability Symposium, IEEE, 1998.

91

26.

27.
28.

29.

30.
31.

32.

33.

34.

35.

36.

37.
38.
39.

40.
41.
42.

43,
44,
45.

46.

47.

48.

49.

50.

51.
52.

53.
54.

Kao, W.I, Iyer, R.K., Tang, D.: FINE: A Fault Injection and Monitoring Environment for Tracing the UNLX
System Behavior Under Faults, IEEE, 1993.

Binder, R.V.: Testing Object-Oriented Systems Models, Patterns, and Tools, Addison Wesley, 1999.

Kanawati, G.; N. Kanawati, N.; Abraham, J: FERRARI: A Flexible Software-Based Fault and Error Injection
System, IEEE Transactions on Computers, 44 (2), Feb. 1995.

Michael, J. B.: Requirements Analysis: Generic and Derived Safety Requirements, lecture for SW4582: Systems
Sofiware Safety course at Naval Postgraduate School, Oct 2001.

Voas, J.; Miller, K.W.: Sofiware Testability: The New Verification, IEEE, May 1995.

Voas, J.: Testability Based Assertion Injection for Software Debugging, Proceedings of Second International
Workshop of Automated and Algorithmic Debugging (AADEBUG), May 1995.

Tsai, T.K.; Iyer, R K.: Measuring Fault Tolerance with the FTAPE Fault Injection Tool, Center for Reliable and
High Performance Computing, Coordinated Sciences Laboratory, 1994.

Ghosh, S.; Mathur, A.P.; Horgan, J.R.; Li, J.J.; Wond, E.W: Software Fault Injection Testing on a Distributed
System — A Case Study, First International Software Quality Week Europe, Brussels, Belgium, November 4-7
1997.

Tsai, T.K.; Iyer, R.K.: An Approach to Benchmarking of Fault-Tolerant Commercial Systems, Proceedings of the
Second Annual IEEE International Computer Performance and Dependability Symposium, IEEE, p. 204-
213,1995.

Carney, D.: Java Perks Up Federal Applications, Federal Computer Weekly, June 21, 1999.

World Wide Web Consortium (W3C). “Extensible Markup Language (XML).” [http://www.w3.org/XML/].
September 2002.

Chiba, Shigeru. “Javassist Home Page.” [http://www.csg.is.titech.ac.jp/~chiba/javassist/]. October 2002.

Palo Alto Research Center Incorporated. “Aspectj.org.” [http://aspectj.org/servlets/AJSite]. 2002.

Sun Microsystems, Inc. “Java Platform Debugger Architecture.” [http://java.sun.com/j2se/1.4/docs/guide/jpda/].
2002.

Compaq. “Compaq JTrek.” [http://www.compag.com/java/download/jtrek/]. December 2002.
The Apache Software Foundation. “Xerces2 Java Parser.” [http://xml.apache.org/xerces2-j/index.html]. 2002.

Louderback, Jim. “Any PC Can Fall Victim To The Heisenberg Principle.”
[http://www.ncns.com/news/2/heisenberg.html]. June 1997.

Webopedia. “Definition of Overhead.” [http://www.webopedia.com/TERM/o/overhead.html]. 2002.

Sun Microsystems, Inc. “Java Message Service APL” [http://java.sun.com/products/jms/]. 2002.

Thornhus, R.: Software Fault Injection Testing, Master of Science Thesis in Electronic System Design, Ericsson
Telecom, February 2000.

Webgain, Inc. “Java Compiler Compiler (JavaCC) - The Java Parser Generator.”
[http://www.webgain.com/products/java_cc/]. 2002.

Pazandak, P., Wells, D., “Probemeister: Distributed Runtime Software Instrumentation.”
[http://joint.org/use2002/sub/pazandak-ProbeMeister.pdf]. 2002.

Cigital. “Case Study II: Finding Defects Earlier Saves Big $$3.” [http://www.cigital.com/solutions/roi-cs2.html].
2002.

Sadiku, M. and Ilyas, M., Simulation of Local Area Networks, Boca Raton, Florida. CRC Press, 1994, pp. 112-
133.

Hightower, R.; Lesiecki, N.: Java Tools for Extreme Programming: Mastering Open Source Tools Including Ant,
JUnit, and Cactus, John Wiley and Sons, 2001.

Beck, K.: Extreme Programming Explained, Addison-Wesley, 2000.

Choi, B.: Test Adequacy Measurement Using a Combination of Criteria, International Journal of Reliability,
Quality and Safety Engineering, Vol. 7, No. 3, 2000, pp. 191-203.

Weyuker, E. J.: Axiomatizing Sofiware Test Data Adequacy, IEEE TSE, Vol.SE 12, No.12, 1986, pp. 1128-1138.

Zhu, H.; Hall, P.; May, J.: Software Unit Test Coverage and Adequacy, ACM Computing Surveys, Vol. 29, No. 4,
December 1997.

92

55.

56.
57.
58.
59.

60.

61.
62.
63.

64.

65.
66.

67.
68.
69.
70.
71.
72.

Johnson, J.: GUI Bloopers: Don'ts and Do's for Software Developers and Web Designers, Morgan Kaufmann
Publishers, March 2000.

Holub, A: Taming Java Threads, Apress, 2000.
Hyde, P.: Java Thread Programming, Sams, 1999.
Lea, D.: Concurrent Programming in Java: Design Principles and Patterns, Addison-Wesley, 1999.

Pavlopoulou, C.; Young, M.: Residual Test Coverage Monitoring, Proceedings of the 21 International
Conference on Software Engineering, IEEE Computer Society Press, 1999, pp. 227 — 284.

Young, M., Howells, C. (University of Oregon), “Gretel: An Open Source Residual Test Coverage Tool.”
[http://www.cs.uoregon.edu/research/perpetual/Software/Gretel/]. June 2002.

SourceForge.net. “Hansel 0.02.” [http://hansel.sourceforge.net/]. 2002.

SourceForge.net. “GretAnt.” [http:/gretant.sourceforge.net/]. 2002.

Codework. “JCover: Java Code Coverage Testing and Analysis.”
[http://www.codework.com/JCover/product.html]. 2002.

Miller, S. K.: Aspect-Oriented Programming Takes Aim at Software Complexity, Technology News, Vol.34, No.4,

April 2001, pp. 18-21.
Brooks, F.: The Mythical Man-Month, Addison-Wesley, 1995.

Nuseibeh, B.: Ariane 5: Who Dunnit?, IEEE, 1997 , Report by the Inquiry Board, Ariane 5 Flight 501 Failure,
http://java.sun.com/people/jag/Ariane5.html, 1996.

SourceForge.net. “FIDe: Fault Injection via Debugging.” [http://fide.sourceforge.net/]. 2002.

SourceForge.net. “Linux Fault Injection Test Harness.” [http://fault-injection.sourceforge.net/]. 2002.

SourceForge.net. “JPWrite.” [http://jpwrite.sourceforge.net/]. 2002.
Sun Microsystems, Inc. “JDBC Data Access APL.” [http://java.sun.com/products/jdbc/]. November 2002.

Paula, G.: Java Catches on for Manufacturing, The American Society of Mechanical Engineers, December 1997.

Storey, N.: Safety Critical Computer Systems, 2nd Ed, Prentice Hall, 1996.

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

APPENDIX A - SIMPLE UML DIAGRAMS

This appendix contains UML diagrams that describe some of the design aspects of

SIMPLE.

Read Faults

Instrument SUT

Deploy Faults

Execute SUT

Trigger Faults

Inject Faults

Analyze Behavior

(U0 T0

Figure A-1. SIMPLE Activity Diagram

95

EventThread]
(Faultinjector) SimpleHarness FaultParser
I >—
FaultManager SUTInstrumentor
1
Fault

Figure A- 2. High-level Class Diagram of SIMPLE Components

96

BreakpointEvent

corresponds-to

For particular faults, the FaultParser will
Faults.xml utilize the SUTInstrumentor to instrument
the relevant class byte-code of the SUT.
- Faults that apply are: Memory-Exhaustion,
pafsds Processor-Exhaustion, Thrown-Exception,
and Forced-Delay Faults.
configures/processes
Uses the Java | \ FaultParser
Platform Debugger d
AP +parse() 1
; configures-faults
instrume
EventThread | . . This is how thel ",
(Fault-Injector) injects-faults-via FaultManager| manag ftes Fault ST
-time : long > 3 SIMPLE to start |
+add() 1 * |[+execute() its timer clock, |
spawnsiaffects [T ‘ \\
ObjectFault consists PrimitfveFauFtl StartTimeEvent| |UpdateTimeEvent
Target Debug JUM +execute()] * |+execute() +execute() +execute()
execltes (ObjectFieldFault ObjectVarFault PrimitiveFieldFault PrimitiveVarFault This is how SIMPLE |
updates client-side
SIMPLE components
+execute() +execute() +execute() +execute() of time
SoftwareUnderTest automatically pre-instruments SUTInstrumentor 1
/ +instrument()
A static class thatl . Faults can be customized |
manages processor, and "hard-wired" here. I
integfated-into | exception, delay, and AspectJ best deals with Uses the JTrek APIL,
memory faults “seperation-of-concerns” develo;_)ed by Compaq.
s issues. Any java bYte’COde
toolkit API can be
used here.

SimpleHelper

/ﬁmplel\spect

nts via

Figure A-3. Detailed Class Diagram of SIMPLE Components

97

Faults will be read .
from an XML
configuration file

READ FAULT: INSTRUMENT SUT:
entry: fault = FaultParser.read() entry: SUTInstrumentor.instrument(fault)

FaultManager add fault)

[else]

[fault is of type MEM, EXC, PRC, DLY]

Memory-Exhaustion, Py Exhaustion, | .
Forced-Delay, and Thrown-Exception faults

will be directly instrumented into the SUT

)

<
N

evSUTFinished /

@< EventThread cleanup ()

[all faults read] /

evBreakPoint

TestHarness executeTarget/VM(SUT)

The SUT is executed
in a target JVM monitored

/ by the EventThread

The FaultManager will |
attempt to map each
evClassLoaded / fault to a corresponding
%@w EXECUTE EventThread pauseTarget/\V class in the target JUM.

RESOVE FAULT:

EventThread.resumeTarget/VM(} (enw: classLoaded = evClassLoaded getClassLoaded()

exitF

y oaded)

TRIGGER FAULT:
eniry: sourcelocation = evBreakPoint.getSourceLocation(),

[faukt == pull time = EventThread.getTime()

EventThread resumeTargetJVM{)
exit: EventThread pauseTarget/VM()

\

A breakpoint will be set .
accordingly in each
class that is mapped

Resume SUT execution if |,
there are no further faults
associated to the breakpoint.

X to a fault.
When a breakpoint is |
encountered, extract the
cormesponding fault from
the FaultManager

INJECT FAULT:
entry: fault = FaultManager getNextFault{scurcelLocation)

[fault '= null]

[fault imeTolnject{lime) == true && fault not instanceof StartTime] /
EventThread.injectintoJVM(fault)

\

At this point, various fault |

[else])(
N

[fault instanceof StartTime]

START TIMER:
entry: EventThread startTimer()

)““\—\

aftributes are checked

(e.g., start time, end time,
probability, and number of
invocations.) Any of these
) i aftributes can suppress the

The fault action could be . injection of the fault.
an indicator to reset time.
In this case, we reset the

execution timer,

Figure A-4. General State Diagram of SIMPLE Processes

98

SimpleHarness EventThread TargetJVM

I
I
: readFaults()
I
I

execute(SUT)

N]

L launch(SUT) -

' resolveFaults (]\._;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1 I
I _triggerFaults () !
| I
I
I
I
I
I
I
I
I
I
|
I
I
I

|
L

]

|

|

I

I

|

I

|

| =
I

I 1

| —

: processHaults()
|

|

I

I

|

I

|

|

I

I

%

| injectFaults ()
1
1
1

Figure A-5. High-level Sequence Diagram of SIMPLE Process

99

while (true)

SimpleHarness FaultParser Fault SUTInstrumentor
1]
|_readFauts () < |
, ! l
PSUEDO-CODE: !
| read()
|
|
|
|

fault = FaultParser.read(),
if (fault == null)
{

break;

}
if (fault == EXC, MEM, DLY, PRC)

SUTInstrumentor.instrument{fault)

}
else

{
FaultManager add(fault);

|
[fault is EXC, MEM), DLY, PRC]
instrument{fault)

|U)
-
5

FaultManager

class = getClass (fault.getLocation ())

N

— |modifiedClass =
instrumentByteCode(class, fault)

1

saveCl lifiedClass);

]
[fault is not EXC, JIEM, DLY, PRC] add(fault

NN

N

Figure A-6. Sequence Diagrams of Faults Being Parsed

100

TargetVM ClassLoadedEvent EventThread FaultManager Fault

1
<<evClassloaded>>
T

pause()

: _class = getClass()
==

AT

PSUEDO-CODE: D
fault = getFault(class) -

—

public void ClassLoadedCallback(ClassLoadedEvent event)
{

TargetJVM.pause(); // Pause the JVM

Class class = event.getClass()

Iterator iterator = FaultManager.getFault(class),

while (iterator.hasNext())

searchFarFault(class)

I

R N A
I A S

Fault fault = (Fault)iterator.next();

location = fault.getLocation();

Il Set a breakpoint at this location ...
EventThread.setBreakpoint(class, location);

location = getLocation()

A

—_—
setBreakpoint(c!#ss. location)

I.“{
e() |

|

1

}
TargetJVM.resume(); // Resume the JVM

A

AR - 5

"ﬁ%';'""""""""""";

Figure A-7. Sequence Diagram of Classes Being Prepared

101

SystemClock FaultManager

TargetJVM BreakpointEvent EventThread
T T T
1 [P !
1 b + |
I I =1
i I time = getTime()
1 I
le | pause()
!""\-..

[psueDO-cODE:

public void breakpointEventCallback
(BreakpointEvent event)

{
time = SystemClock getTime();
Target/VM.pause();
Class class = event getClass();
location = event.getLocation();
lterator iterator =

FaultManager getFaults(class, location);

while (iterator hasMext())

{
Fault fault = (Fault)iterator next();
if (fault.isTimeTolnject(time))
{

value = fault getValueToSet();

variable = fault.getVariable ToCorrupt();

Target)VM.setValue(variable, value);

fault.update();
}

}
TargetJVM.resume();
}

class = getClass()

location = getLocation()

I

|
—

I

I

I

I

R R S

getFaulticlass, location)

[isTimeTolnject == true]
|__setValue(variable, value)

T
|
|
|
|
>
|
|
|
I
|
|
I
|
|
|
i
|
|
|
|
|
|
I
I
I
[}
I

w__e’_________________

skarchForFault(class, location)

'&

boolean isTimeTalnject =

sTimeTolnject{time)

1
[isTimeTolnject == true] variable = getVariableToCorrupt()

I 1
[isTimeTolnject == true] variableValue = getValueToSet()
T T

=

resume()

[isTimeTolnject == true] update()

R

check internal
afttributes to
see if it is time
to inject

Figure A-8. Sequence Diagram of Fault Triggers Being Served

102

classObject contains the

byte-code contents of the

class file specified by the
classMName.

classMame = fault. getClassName()
lineN = faultgetLineNumbe()

The classObject is |
provided via a JTrek
AP method call.

classObject = SUTI

getClassObj

)

The classObject iterates
through all statements

within the class byte-code
L | statement = classObject getNextStatement()

JTrek does not include
AP for directly instrumenting
a location when given
a line number.

T

Ise]
<’ Atthis point, the classObject | .
T e inserts appropriate byte-code
ERROR: Fault not deployed A [lineMumber == logic pertaining to the fault

since corresponding statement

statement lineNumber]
not found 1!

at the desired statement.

E:IassObject.insel‘l(BYTE_OODE_LOGlC. statement)

=

[staterent == NULL]

-

Save the resulting
classObject to the disk

[SUTInstrumenwr.saveToDisk(classOhjecl}]/

Figure A- 9. State Diagram of SUT Instrumentation

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

APPENDIX B - FAULT SPECIFICATION GRAMMAR

This appendix contains the fault specification grammar. More specifically, the
XML data elements of the fault configuration file will be described here in grammar
form. Where necessary, annotated descriptions are provided. Currently, the tester
provides this fault configuration file to SIMPLE, but future work would entail the

implementation of a fault deployment support tool that automatically generates the fault

configuration file.

Rule Rule Expansion Description
TopFaultNode “<FaultConfig>" This is the entry rule for
FaultNode* defining the fault
configuration file.
“</FaultConfig>"
FaultNode “<Fault “ [FaultAttribute*] “>" This rule defines a fault
FaultType* in SIMPLE where fault
attributes are set. The
“</Fault>” :
type of the fault is
provided by the
FaultType rule.
FaultAttribute “className="""string ‘| Specifies the class where
the fault is to occur.
“lineNo="""integer ‘| Specifies the line number
of the class where the
fault is to occur
“numOflnvoc="""integer “ | Specifies the number of
times the fault is to occur.
“prob="""float*”” | Specifies the probability

105

that the fault is to occur.

“startTime="""integer*”” | Specifies the starting time
that the fault is to occur.

“endTime="""integer””” | Specifies the ending time
that the fault is to occur.

“activate At="""string”:"integer””” | Specifies a class location

at which to activate the

fault.

99,99 (15555 |

“deactivate At="""string”:”integer

Specifies a class location
at which to deactivate the

fault.

9999

“varName=

(15554 |

string

Specifies the variable to

be corrupted by the fault.

“valToSet=""float / integer”” |

Specifies the corruption
value to apply to the

variable.

“setToNull=""boolean‘”

Specifies whether to
apply the null value to the

variable.

9999+

integer

62999 |

“arg=

Specifies a generic
argument to be used by
the Processor, Memory,
Delay, and Exception
faults.

(152454

“enable=""boolean

Specifies whether the
fault is to be initially

enabled or not.

FaultType

“<PrimField “/FaultTypeAttribute*]

Specifies that the fault

106

‘6/>” |

FaultType*

involves the corruption of
a class field that is a

primitive type.

“<PrimLocal “/FaultAttribute*] “/>" |

Specifies that the fault
involves the corruption of
a local method variable
that is a primitive type
(e.g., integer, float,

double, etc).

“<ObjField “ [FaultAttribute*]

‘6/>” |

FaultType*

Specifies that the fault
involves the corruption of
a class field that is a

object type.

“<ObjLocal “ [FaultAttribute*]

‘6/>” |

FaultType*

Specifies that the fault
involves the corruption of
a local method variable

that is an object type.

“<Processor “[FaultAttribute*] “/>" |

Specifies a processor

fault.

“<Memory “[FaultAttribute*] “/>" |

Specifies a memory fault.

“<Delay “[FaultAttribute*] “/>" |

Specifies a delay fault.

“<Exception “[FaultAttribute*] “/>”

Specifies an exception

fault.

107

THIS PAGE INTENTIONALLY LEFT BLANK

108

APPENDIX C — CASE STUDY UML DIAGRAMS

This appendix contains UML diagrams that supplement the case studies discussed

in Chapter VII.
NetworkAnalysisResults|
-arrivalRate : double
_m: - double NetworkSession
-averageDelay : double analyzes » [‘utilization : double
-delayConint : double -averageDelay : double
-utilization : double -throughput : double
-utilizationConlnt : double 1 * |-collisionRate : double
-throughput : double PacketidAssi
NetworkParameters -collisionRate : double = ig ores id b
-maxStations : int . P i
. assignld() : int
-busRate .doul.ale +resetid(in id : int)
-packetLength : double logs network data
-maxBackoff : double generates »
-persist | double
-jamPeriod : double T
-maxPackets : double p
-factor : double oqn |g\fles d . Station , adatatypes o Packet
_maxQueveSize - int Network consists » - consists b | paekatQueys |Maintains » - —
idSize - int ® -stationld ® -stationld : int
rasize - in) +queue(n p - Packel -startTime : double
-degreesOff reedom : int +startSimulation() q p:) PR
+dequeue() : Packet
synchronizes »
simulates transmisson activity events
SimulationClock k4
-time : double
+setTime(in time : double)
+getTime() : double
utilizes
Event . K L
synchronizes tonid simulates packet activity evenjts »
-startTime : double
simulgtes » *
type-iderfufied-by
NetworkEventManager
wenumerations
+fireNextPendingEvent() : Event _ NetworkEventType
+setFutureEvent(in stationld : int, in type : NetworkEventType, in fime : double) 1 -arrivalEvent = 0
+disableEvent(in stationld : int, in type : NetworkEventType) -transmissionAttempt = 1

-collisionCheck = 2
-departure = 3

Figure C- 1. Class Diagram for the CSMA/CD Simulation Software

109

Exceptions

TestFailure

TestResult consists
* Test date:
updates »
consists » P +start() 1 *
*+stop() consists
+run(inout testResult : TestResult) 1 1 |+exception()
+noPass() >
% +getResult() * *
TestSuite TestCase "
. +run(inout testResult : TestResult) +run(inout testResult : TestResult)
+add(in test : Test) +setup()
usks +cleanup()
1
TestRunner i
displays »

+run(in testCase : TestCase)

+run(in testSuite : TestSuite)

Figure C- 2. JUnit Framework Class Diagram

110

TestCase

NetworkSimulationMainTest

+withinRangeNetworkParameters()
+outOfRangeNetworkParameters ()

+missingNetworkParameters()
+undefinedPropertyFile()
+corruptedPropertyFile()
+withinRangeMetworkParameters2()
+suite() : TestSuite

PacketQueueTest

+queueSingleElementToQueue()
+queueSeveralElementsToQueue()

+queueMNullElementToQueue()
+dequeueSingleElementFromEmptyQueue()
+dequeueSingleElementFromNonEmptyQueue()
+degueueS IE tsFromMNonEmptyQueue()
+suite() : TestSuite

NetworkTest

+run(inout testResult : TestResult) q_

+setup()
+cleanup()

+verifyProcessingOfArrivalEvent()
+verifyProcessingOfTransAttEvent()
+verifyProcessingOfCollChkEvent()
+verifyProcessingOfDepartureEvent()
+testRhoGreaterThanOneException()
+testStationPacketBufferFullException()
+suite() : TestSuite

NetworkEventManagerTest

+testSetAndGetEventTimeMethods()
+testSetAndClearEventTimeMethods()
+testGetEventWithSmallestTimeMethod()

+testGetAllSimilarEventsWithSameTimeMethod()
+suite() : TestSuite

StationTest

+queueSingleElementToEmptyQueue()
+queueSingleElementToNonEmptyQueue()
+queueSingleElementToNearCapacityQueue()
+queueSingleElementToNonEmptyQueue()
+queueSeveralElementsToNonEmptyQueue()

+queueSeveralElementsToMNearCapacityQueue()
+queueNullElementToEmptyQueue()
+queueNullElementToMNonEmptyQueue()
+dequeueSingleElementFromEmptyQueue()
+dequeueSingleElementFromNonEmptyQueue()
+dequeueSingleElementFromFullCapacityQueue()
+testStationSetAndGetldMethods()

+suite() : TestSuite

Figure C- 3. Test Suite Class Diagrams

creates | ARS 1 stores
-loginiD : string 1
1 +verifyUser() 1 |
+logout()
Reservation Information Request +notifyAlerts() Flight Catalog
-flightNum : string i) 1
-departDate : string logg into
-eTicket : string
puthorizes User authorizes
* A 1 1
1 1 - -
-loginld : string £
ETicket createsFlight Modification Request
creates
-number : string 1 1 1 -flighthum : string
\ -departDate : string
1 [1 Travel Agent Flight Manager
queries 1
+requestFlightinfo() +deleteFlight() _
L 1 +makeReservation() +enterFlightinfo() contains
stores +respondFlightModAlerts() +getFlight()
_|+queryReservation()
4 [teancelReservation() 1 1
makes
1 - 1 queries
creates |
Reservation cancels * adds modifies, deletes
-customerName : string .
-flightNum : string Flight Information Request
~|-departDate : string I 1° ")
-travelAgentName : string -departDate : string s i *
-fare : currency . -departCity : string 1 Flight - :
-allowCancel : boolean -arriveCity : string quer%ﬁ Flight Description
[~-flightNum : string _ _
-departDate : string 1 flightNum : string
notifies, responds 1 -isModifiedFlight : boolean described-by -deparl_l:r)_ate :_sln.ng
[+generateFlightModificationNotification() 1_[departTime : string
~-depariCity : string
Customer Travel Agent Notification 1 1 1 -arr!ueD_a‘te : strllng
-arriveTime : string
modifies — . arrives to -arriveCity : string
-name : s?nng_ genefates —=n -fare : currency
-address : slring eparts from -numSeats : int
-city : string 1
-state : string W 1
-email : string produces]
-phoneNumber : string Flight Modification Notification
Airport
-isModifiedFlight : boolean
-flightMum : string -name : string
-departDate : string -code : string
+checkReservation()
+deleteReservation()

Figure C- 4. Class Diagram for the ARS System

APPENDIX D — CASE STUDY FAULT CONFIGURATION FILES

This appendix contains the SIMPLE fault configurations that were used in the
case studies described in Chapter VII.

113

D-1 CSMA/CD UNIT-TEST FAULT CONFIGURATION FILE (CASE STUDY I)

<l--
Fault configuration for the "SinpleTest" TestSuite Case-Study #1

devel oped by Chris Acantilado and Neil Acantilado
-->

<Faul t Confi g>

<l--
Net wor kSi nul at i onMai nTest
-->
<l-- Test Case 1: withi nRangeNet wor kPar aneters-->
<Fault cl ass="csna. app. Net wor kSi nul ati onMai nTest" |ineNo="58"
nunc | nvoc="1">
<PrinField var Nane="nuntf Runs" val ToSet ="-999"/ >
</ Faul t >

<l-- Test Case 2: outOf RangeNetwor kPar anet er s- - >
<Fault cl ass="csna. app. Net wor kSi nul ati onMai nTest" |ineNo="92"
nuncf | nvoc="1">
<PrinFi el d var Nane="packet Lengt h" val ToSet ="-999"/ >

</ Faul t >
<l-- Test Case 3: queueSingl eEl enent ToQueue -->
<Fault cl ass="csna. app. Net wor kSi nul ati onMai nTest" |ineNo="128"

nuntf | nvoc="1">
<Pri nFi el d var Nane="nmaxPacket s" val ToSet ="-999"/ >

</ Faul t >
<l--
Packet QueueTest
-->
<l-- Test Case 1l: queueSi ngl eEl emrent ToQueue -->
<Fault class="csma.client.Packet QueueTest" |ineNo="44" nunOfl nvoc="1">
<Qbj Local var Name="packet" set ToNul | ="true" />
</ Faul t >
<l-- Test Case 2: queueSever al El enent sToQueue -->
<Fault class="csnma.client. Packet QueueTest" |ineNo="63" nunOflnvoc="1" >
<PrinLocal varNanme="i" val ToSet="5"/>
</ Faul t >

<l-- Test Case 5: dequeueSi ngl eEl enent Fr onNonEnpt yQueue -->
<Fault class="csnma.client. Packet QueueTest" |ineNo="121" nunCfI|nvoc="1" >
<Obj Local var Nane="packet" >
<PrinFi el d var Nane="packet | d* val ToSet="0"/>
<PrinField var Nanme="start Ti ne" val ToSet ="0"/>
</ vj Local >
</ Faul t >

<l-- Test Case 6: dequeueSever al El enent sFr omNonEnpt yQueue - ->
<Fault class="csnma.client. Packet QueueTest" |ineNo="145" nunCfI|nvoc="1" >
<Obj Local var Nane="packet" >
<PrinFi el d var Nanme="packet | d* val ToSet="8"/>
<PrinField var Nane="start Ti ne" val ToSet =" 8"/ >
</ vj Local >
</ Faul t >

<l--
St ati onTest

114

<l

<l

<!

<l

<!

<l

<l

<!

<l

-->

-- Test Case 4: queueSi ngl eEl ement ToFul | Capaci t yQueue -->

<Fault class="csma.client.StationTest" |ineNo="104" nunCfI|nvoc="1"
<Obj Local varNane="station">
<Pri nFi el d var Nane="naxQueueSi ze" val ToSet ="9999"/ >
</ vj Local >
</ Faul t >
-- Test Case 5: queueSeveral El enent sToNonEnpt yQueue BEG N - - >
<Fault class="csma.client.StationTest" |ineNo="123" nunfI|nvoc="1"
<Obj Local varNane="station">
<Pri nFi el d var Nane="naxQueueSi ze" val ToSet ="10000"/ >
</ vj Local >
</ Faul t >
<Fault class="csma.client.StationTest" |ineNo="125" nunT|nvoc="1">
<PrinmLocal varNanme="i" val ToSet="-5"/>
</ Faul t >
-- Test Case 6: queueSeveral El enent sToNear Capaci t yQueue -->
<Fault class="csma.client.StationTest" |ineNo="140" nunCfI|nvoc="1"
<Obj Local varNane="station">
<Pri nFi el d var Nane="naxQueueSi ze" val ToSet ="20000"/ >
</ vj Local >
</ Faul t >
-- Test Case 10: dequeueSi ngl eEl ement Fr omNonEnpt yQueue -->
<Fault class="csma.client.StationTest" |ineNo="226" nuntfI|nvoc="1"
<Obj Local var Nane="packet">
<PrinFi el d var Nane="packet | d* val ToSet="0"/>
<PrinField var Nane="start Ti ne" val ToSet ="0"/>
</ vj Local >
</ Faul t >
-- Test Case 12: testStationSet AndCGetl| dMet hods -->
<Fault class="csma.client.StationTest" |ineNo="267" nunCfI|nvoc="1"

<Obj Local varNane="station">
<PrinField var Nane="st ati onl d* val ToSet =" 0"/ >
</ vj Local >
</ Faul t >

Net wor kEvent Manager Test
-->

-- Test Case 1: test SetAndGet Event Ti mreMet hods -->
<Fault cl ass="csna. event. Net wor kEvent Manager Test" |i neNo="53"
nuncf | nvoc="1" >
<Pri nLocal var Name="expect edTi ne" val ToSet ="-999"/>
</ Faul t >

-- Test Case 2: testSet Andd ear Event Ti neMet hods -->
<Fault cl ass="csna. event. Net wor kEvent Manager Test" | i neNo="129"
nunc | nvoc="1" >
<PrinmLocal varNane="transAttTi ne" val ToSet="-999"/>
</ Faul t >

-- Test Case 3: testCGetEventWthSnal | est Ti reMet hod -->
<Fault cl ass="csna. event. Net wor kEvent Manager Test" | i neNo="212"
nuncf | nvoc="1" >
<Pri nmLocal var Nane="event Ti ne" val ToSet ="-999"/ >
</ Faul t >

115

>

>

>

>

>

<l--

Net wor kTest
-->
<l-- Test Case 1: verifyProcessi ngxf Arrival Event -->
<Fault cl ass="csma. net wor k. Net wor k" |i neNo="642" nunOf| nvoc="1"

acti vat eAt =" csna. net wor k. Net wor kTest : 47"

deacti vat eAt =" csna. net wor k. Net wor kTest : 53" >

<PrinField var Nane="i sArri val Event Processed" val ToSet ="fal se"/>
</ Faul t >

<l-- Test Case 2: verifyProcessi ngxf TransAttEvent -->
<Fault cl ass="csna. net wor k. Net wor k" |ineNo="651" nunOf| nvoc="1"
acti vat eAt =" csna. net wor k. Net wor kTest : 72"
deacti vat eAt =" csma. net wor k. Net wor kTest : 78" >
<PrinFi eld var Name="i sTransm ssi onAt t enpt Event Processed"
val ToSet ="f al se"/>
</ Faul t >

<l-- Test Case 3: verifyProcessi ngtCol | ChkEvent -->
<Fault cl ass="csnma. net wor k. Net wor k" |i neNo="660" nunOf| nvoc="1"
acti vat eAt =" csna. net wor k. Net wor kTest : 97"
deacti vat eAt =" csna. net wor k. Net wor kTest : 103" >
<PrinField var Nanme="i sCol | i si onCheckEvent Processed" val ToSet="fal se"/>
</ Faul t >

<l-- Test Case 5: testRhoGreater ThanOneException -->
<Fault cl ass="csna. net wor k. Net work" |ineNo="751" nunOf| nvoc="1"
acti vat eAt =" csna. net wor k. Net wor kTest : 145"
deacti vat eAt =" csna. net wor k. Net wor kTest : 159" >
<Pri mLocal varNane="arrival Rate" val ToSet="100"/>
</ Faul t >

</ Faul t Confi g>

116

D-2 ARS FAULT CONFIGURATION FILE (CASE STUDY 11, PART 1)

<l--
ARS case-study #2, part 1

devel oped by Chris Acantilado and Neil Acantilado
-->

<Faul t Confi g>

<Faul t class="ars. dat abase. Dat abaseManager" |ineNo="142" enabl e="fal se">
<Qvj Fi el d var Name="ar sDBSt at ement " set ToNul | ="true"/ >

</ Faul t >

<Faul t class="ars. dat abase. Dat abaseManager" |ineNo="160" enabl e="true" >
<vj Fi el d var Name="ar sDBSt at ement " set ToNul | ="true"/ >

</ Faul t >

</ Faul t Confi g>

117

D-3 ARS FAULT CONFIGURATION FILE (CASE STUDY 11, PART 2)

<l--
G etel / ARS case-study 2, part 3 (GQU freezing)

devel oped by Chris Acantilado and Neil Acantilado
-->

<Faul t Confi g>
<Faul t class="ars. dat abase. Dat abaseManager" |ineNo="628" enabl e="true">
<bj Local varName="result" set ToNul | ="true"/>

</ Faul t >

</ Faul t Confi g>

118

D-4 GRETEL/ARS FAULT CONFIGURATION FILE (CASE STUDY III)

<l--
ARS case-study 3

devel oped by Chris Acantilado and Neil Acantilado
-->

<Faul t Confi g>

<Faul t cl ass="ar s. dat abase. Dat abaseManager" |ineNo="658">
<Exception prob="1.0" arg="0"/>
</ Faul t >

</ Faul t Confi g>

119

THIS PAGE INTENTIONALLY LEFT BLANK

120

APPENDIX E — SIMPLE SOURCE CODE

This appendix contains the working source code of SIMPLE build that was used

in the case studies. As evident, it is a work in progress.

121

E-1 BUILD. XML

<proj ect

<l--
<t arget

<property
<property
<property
<property
<property
<property
<property
<property
<property

Defi ne sone properties for external

name="set Properti es">

</target>

name="si npl e" defaul t ="conpil e">

libraries used by this project

name="JAVA HOVE"' val ue="c:\j2sdkl.4.0"/>

name="TOOLS PATH' val ue="c:\j2sdkl1.4.0\1ib"/>
name="JPDA_PATH' val ue="c:\thesis\dev\JPDA\."/>
name="ASPECTJ_PATH' val ue="c:\java\aspectj1l.0\lib"/>
name="JAVASSI ST_PATH"' val ue="c:\java\javassist2.0"/>
name="JUNI T_PATH' val ue="c:\java\junit3.7"/>
nane="SRC DI R' val ue="."/>

name="XERCES_PATH' val ue="c:\j ava\xerces-2_0_1"/>
name="JTREK_PATH' value="c:\java\jtrek"/>

<t askdef nane="ajc" classnane="org. aspectj.tools.ant.taskdefs. A c">
<cl asspat h>

<pat hel enment
<pat hel enment
<pat hel enment

</ cl asspat h>
</t askdef >

<t ar get

| ocat i on="${ ASPECTJ_PATH}/ aspectjtools.jar"/>
| ocat i on="${ ASPECTJ_PATH}/ aspectj-ant.jar"/>
| ocation="${JAVA HOMVE}/lib/tools.jar"/>

name="conpi | eJPDA" depends="set Properties">
<javac srcdir="${JPDA PATH}" source="1.4" excludes="Hello.java">
<cl asspat h>

<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment

</ cl asspat h>
</ javac>
</target>

<t ar get

| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati

on="
on="
on="
on="
on="
on="
on="
on="
on="
on="
on="

>

${IJPDA_PATH}"/ >

${TOOLS_PATH}/tool s.jar"/>

${ ASPECTJ_PATH}/ aspectjrt.jar"/>
${JAVA HOVE}/lib/tools.jar"/>
${JAVASS| ST_PATH}/j avassist.jar"/>
${IJUNI T_PATH}/junit.jar"/>

${ XERCES_PATH}/ xerceslnpl .jar"/>

${ XERCES _PATH}/ xer cesSanpl es.jar"/ >
${ XERCES_PATH}/ xm Parser APl s.jar"/>
${ JTREK_PATH}"/ >

name="conpi | e" depends="conpi | eJPDA" >
<ajc srcdir="${SRC DIR}" source="1.4">
<cl asspat h>

<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enment
<pat hel enent
<pat hel enment

</ cl asspat h>
</ aj c>
</target>

<t ar get

| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati
| ocati

nane="cl eanal | " >
<del et e>

on="
on="
on="
on="
on="
on="
on="
on="
on="
on="
on="

${SRC DIR}"/>

${JPDA_PATH}"/ >

${TOOLS_PATH}/tool s.jar"/>

${ ASPECTJ_PATH}/ aspectjrt.jar"/>
${JAVA HOVE}/lib/tools.jar"/>
${JAVASS| ST_PATH}/j avassist.jar"/>
${IJUNI T_PATH}/junit.jar"/>

${ XERCES_PATH}/ xerceslnpl .jar"/>

${ XERCES _PATH}/ xer cesSanpl es.jar"/ >
${ XERCES_PATH}/ xm Parser APl s.jar"/>
${ JTREK_PATH}"/ >

122

<fileset dir="." includes="**/*. class"/>
</ del ete>
</target>
<target name="cl eanbuil d" depends="cl eanall, conpile" />

</ pr oj ect >

123

E-2 DOM_UTIL.JAVA

package sinple.util;

i mport java.io.*;

i mport org. apache. xerces. parsers. *;
i nport org.w3c.dom *;

i mport org.xnl.sax.*;

/'l Source code adapted fromthe book Program Generators with XML and Java
/1 by J. Craig C eavel and

/**

* The DOM Uil class provides high-level APl to parse an XM. docunent.

*

* @ut hor various (avail abl e as open-source)
*@reat ed May 1, 2002
*/
public class DOM Uti |
{
/**

* Gets the attr attribute of the DOM Util class

*

*@aram n Description of the Paraneter
*@aram attrNane Description of the Paraneter
*@aram defaul tVal Description of the Paraneter
*@eturn The attr val ue

*/

public static String getAttr(Node n, String attrName, String defaul tVal)
{
if (n instanceof Docunent)
{
n = ((Docunent) n).get Docunent El ement () ;
}

String v = null;
if (n instanceof Elenent)

{
v = ((Elenent) n).getAttribute(attrNane);
}

if (v =null || v.equals(""))
{ return defaultVal;
ieturn v;

}

| *x

* Gets the intAttr attribute of the DOM Uil cl ass

*

*@aram n Description of the Paraneter
*@ar am tagNane Description of the Paraneter
*@aram defaul tValue Description of the Paraneter
*@eturn The intAttr val ue

*/

public static int getlntAttr(Node n, String tagNanme, int defaultVal ue)

{
String s = getAttr(n, tagNane, "");
return parselnt(s, defaultValue);

}
/**

* Description of the Method

*

*@aram n Description of the Paraneter

124

*@ar am tagNane Description of the Paraneter

*@aram defaul tValue Description of the Paraneter

*@eturn Description of the Return Val ue

*/

public static String get(Node n, String tagName, String defaultValue)
{

f (n instanceof Docunent)

i
{
n = ((Docunent) n).get Docunent El ement () ;
}
if (n instanceof Elenent)
{
NodelLi st nodes = ((El enent) n).getEl enent sByTagNane(t agNane) ;
i f (nodes.getlLength() == 0)
return defaul t Val ue;
}
el se
{ .
return get Content (nodes.item(0));
}
}
el se
{
return defaul t Val ue;
}
}
/**

* Gets the int attribute of the DOM Wil class

*

*@aram n Description of the Paraneter
*@ar am tagNane Description of the Paraneter
*@aram defaul tValue Description of the Paraneter
*@eturn The int val ue

*/

public static int getlnt(Node n, String tagNanme, int defaultVal ue)
{
String s = get(n, tagName, "");
return parselnt(s, defaultValue);
}
/**
* Gets the content attribute of the DOM Uil class
*
*@aram n Description of the Paraneter
*@eturn The content val ue
*/
public static String get Content(Node n)
{
StringBuffer buf = new StringBuffer();
get Content 1(n, buf);
return buf.toString();
}

/**

* Description of the Method

*

*@aram filenane Description of the Paraneter
*@eturn Description of the Return Val ue
*@xception Exception Description of the Exception

*/

public static Docunent readDocunent(String filenane) throws Exception

125

DOVPar ser parser = new DOWParser () ;
par ser . par se(new | nput Sour ce(new Fil el nput Strean{filenane)));
return parser.get Docurment ();

}
/**

* Description of the Method

*

*@aram s Description of the Paraneter
*@aram defaul tValue Description of the Paraneter
*@eturn Description of the Return Val ue
*/

private static int parselnt(String s, int defaultValue)

{

i nt returnVal ue;

try
{

returnVal ue = Integer. parselnt(s);

catch (Nunber For mat Excepti on exc)

{
returnVal ue = defaul t Val ue;
}
return returnval ue;
}
/**

* Gets the contentl attribute of the DOM Wil class

*

*@aram n Description of the Paraneter
*@aram buf Description of the Paraneter
*/

private static void getContent1(Node n, StringBuffer buf)

{ for (Node ¢ = n.getFirstChild(); c !=null; ¢ = c.getNextSibling())
if (c instanceof Elenent || c instanceof EntityReference)
{ get Content 1(c, buf);
else if (c instanceof Text)

buf . append(c. get NodeVal ue());

126

E-3 EVENTTHREAD.JAVA

| *
*/
| *

*

E I R S R T N R N N N N N N I T

/

@#) EventThread.java 1.3 01/12/03

Copyri ght 2002 Sun Mcrosystens, Inc. Al rights reserved.
SUN PROPRI ETARY/ CONFI DENTI AL. Use is subject to |license terns.

Copyright (c) 1997-2001 by Sun Mcrosystens, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
nodi fy and redistribute this software in source and binary code form
provided that i) this copyright notice and |icense appear on all copies of
the software; and ii) Licensee does not utilize the software in a manner
which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES, | NCLUDI NG
ANY | MPLI ED WARRANTY OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE
CR NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND | TS LI CENSORS SHALL NOT
BE LI ABLE FOR ANY DANMAGES SUFFERED BY LI CENSEE AS A RESULT OF USI NG

MODI FYI NG OR DI STRI BUTI NG THE SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL
SUN CR I TS LI CENSORS BE LI ABLE FOR ANY LOST REVENUE, PRCFIT OR DATA, OR FOR
DI RECT, | NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DANAGES,
HOWNEVER CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, AR SING OQUT OF
THE USE OF OR I NABILITY TO USE SOFTWARE, EVEN | F SUN HAS BEEN ADVI SED OF
THE PGSSI BI LI TY OF SUCH DANVAGES.

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft communications; or
in the design, construction, operation or naintenance of any nucl ear
facility. Licensee represents and warrants that it will not use or

redi stribute the Software for such purposes.

package si npl e;

import sinple.fault.*;
inmport sinple.util.~*;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun. tool s. exanpl e. debug. expr. *;
i nport com sun.tool s. exanpl e. debug. bdi . *;

i mport java.util.*;

/**
* This class processes inconmng JDI events and di splays them
*
* @ut hor Nei| Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 7, 2002
*@ersion
*@#) Event Thread. java 1.3 01/12/03 00: 15: 38
*/
public class Event Thread extends Thread
{
I/l Classes that will be excluded fromthe class prepare process ... Shoul d
/1 make the tester specify this ...
private final static String[] excludes = {"java.*", "javax.*", "comsun.*",
"sun.*", "junit.*", "dec.*"};

127

/! Running VM
private final Virtual Machine vm

/! Connected to VM
private bool ean connected = true;

/! VNDeath occurred
private bool ean vnDi ed = true;

privat e Event Request Manager event Request Manager = nul | ;

// Holds the startTinme
private long startTine = -1;

/'l Fault Manager that is used to manage and execute faults accordingly
private Faul t Manager fault Manager = null;

/**

* Constructor for the Event Thread object
*

*@aram vm Running JVM
*/
Event Thr ead(Vi rt ual Machi ne vm)

{
super (" Debugger Event-Handl er");

this.vm= vm
t hi s. event Request Manager = vm event Request Manager () ;
this. faul t Manager = new Faul t Manager () ;

}
/**

* Adds a fault to the Fault Manager

*

*@aram fault Fault to be added to the event-thread
*/
public void addFaul t (Fault fault)

faul t Manager . add(faul t);
}

/**

* Deletes a fault fromthe Fault Manager
*

*@aram fault Fault to be renmoved fromthe event-thread
*/
public void removeFaul t (Fault fault)

faul t Manager . renove(faul t);

}
/**

* Sets the startTime attribute of the Event Thread obj ect
*/
public void setStartTi me()

/1 1 understand that this can be expensive ...
startTime = SystemcurrentTimeM I lis();

}
/**

* Run the event handling thread. As long as we are connected, get event

128

* sets off the queue and dispatch the events within them
*/
public void run()

{
addd assPr epar eRequest () ;
setStart Tine();
Event Queue queue = vm event Queue();
whi | e (connect ed)
{
try
{
Event Set event Set = queue. renove();
Eventlterator it = eventSet.eventlterator();
while (it.hasNext())
handl eEvent (i t.nextEvent ());
event Set . resune();
catch (I nterruptedException exc)
/'l lgnore
}
catch (VMDi sconnect edExcepti on di scExc)
handl eD sconnect edException();
br eak;
}
} .
Systemexit(1);
}
/**
* Adds a feature to the d assPrepareRequest attribute of the Event Thread
* obj ect
*/
private voi d addd assPrepar eRequest ()
{
d assPrepareRequest cpr =
event Request Manager . cr eat ed assPr epar eRequest () ;
for (int i = 0; i < excludes.length; i++)
{
cpr. addC assExcl usi onFil ter(excl udes[i]);
}
cpr. set SuspendPol i cy(Event Request. SUSPEND _ALL);
cpr. enabl e();
}
/**

* Sets the breakpointEvents attribute of the Event Thread object
*
*@aram location Indicates the location to apply the breakpoint request
*@eturn Description of the Return Val ue
*/
privat e Event Request addBreakpoi nt Request(Location |ocation)
{
Br eakpoi nt Request bpr =
event Request Manager . cr eat eBr eakpoi nt Request (| ocati on);
bpr. set SuspendPol i cy(Event Request. SUSPEND_ALL) ;
bpr. enabl e() ;

129

return bpr;

}
/**

* Sets the stepEvent Request attribute of the EventThread object

*

*@aram thread Indicates the thread to apply the step request
*@eturn Description of the Return Val ue

*/

private Event Request addSt epRequest (ThreadRef erence t hread)

St epRequest req = event Request Manager . cr eat eSt epRequest (t hr ead,
St epRequest . STEP_LI NE, StepRequest. STEP_I NTO) ;

for (int i = 0; i < excludes.length; i++)

{

}

/1 Hard-coded for now
req. addd assExcl usi onFilter("org. aspectj.*");
req. addd assExcl usionFilter("sinple. *");

req. addd assExcl usi onFil ter (excludes[i]);

req. set SuspendPol i cy(Event Request. SUSPEND_ALL) ;
req. enabl e();
return req;

}
/**

* Sets the methodEntryEvent Request attribute of the Event Thread obj ect

*

*@ar am excl udes The classes to ignore for nethod entry requests
*@aram classPattern The class patterns to consider

*@eturn Description of the Return Val ue

*/

private Event Request addMet hodEntryRequest (String[] excl udes,
String classPattern)

{
Met hodEnt r yRequest nmenr =
event Request Manager . cr eat eMet hodEnt r yRequest () ;
for (int i = 0; i < excludes.length; i++)
{
nmenr . addd assExcl usi onFi | t er (excl udes[i]);
nmenr . addd assFilter(cl assPattern);
nmenr . set SuspendPol i cy(Event Request . SUSPEND_NONE) ;
nmenr . enabl e();
return menr;
}
/**

* Sets the methodExit Event Request attribute of the Event Thread object

*

*@aram excludes The classes to ignore for nethod exit requests
*@eturn Description of the Return Val ue
*/
private Event Request addMet hodExit Request(String[] excl udes)
Met hodExi t Request nexr = event Request Manager. cr eat eMet hodExi t Request () ;
for (int i = 0; i < excludes.length; ++i)

{
}

nmexr . addd assExcl usi onFi | t er (excl udes[i]);

130

nmexr . set SuspendPol i cy(Event Request . SUSPEND_NONE) ;
nmexr . enabl e();
return mexr;

}
/**

* Adds a feature to the Mdificati onWat chpoi nt Request attribute of the
* Event Thread obj ect

*

*@aram field The field to track

*@eturn Description of the Return Val ue

*/

private Event Request addModi fi cati onVWat chpoi nt Request (Field field)

{
Mbdi fi cati onWat chpoi nt Request req =

event Request Manager . cr eat eModi fi cat i onWat chpoi nt Request (fiel d);
req. set SuspendPol i cy(Event Request . SUSPEND_NONE) ;
req. enabl e();
return req;

* Adds a feature to the AccessWatchpoi nt Request attribute of the
* Event Thread obj ect

*@aram field The field to track

*@eturn Description of the Return Val ue

*/

private Event Request addAccessWat chpoi nt Request (Field field)

{
AccessWat chpoi nt Request req =

event Request Manager . cr eat eAccessWat chpoi nt Request (fiel d);
req. set SuspendPol i cy(Event Request . SUSPEND_NONE) ;
req. enabl e();
return req;

}
/**

* Dispatch incom ng events
*

*@aram event The renote event fromthe target JVM
*/
private void handl eEvent (Event event)

{

if (event instanceof BreakpointEvent)
br eakpoi nt Event ((Br eakpoi nt Event) event);
el se if (event instanceof StepEvent)
{ st epEvent ((St epEvent) event);
el se if (event instanceof ExceptionEvent)
{ excepti onEvent ((Excepti onEvent) event);
else if (event instanceof Modificati onWatchpoint Event)
nodi fi cati onWat chpoi nt Event ((Modi fi cati onWat chpoi nt Event) event);
el se if (event instanceof AccessWatchpoint Event)

{

accessWat chpoi nt Event ((AccessWat chpoi nt Event) event);

131

el se if (event instanceof MethodEntryEvent)

net hodEnt r yEvent ((Met hodEnt r yEvent) event);
else if (event instanceof MethodExitEvent)

net hodExi t Event ((Met hodExi t Event) event);
el se if (event instanceof ThreadDeat hEvent)

t hr eadDeat hEvent ((Thr eadDeat hEvent) event);
else if (event instanceof O assPrepareEvent)

cl assPrepareEvent ((C assPrepar eEvent) event);
el se if (event instanceof VMstartEvent)
{ vntt art Event ((VMBSt art Event) event);
else if (event instanceof VMDeat hEvent)

vnDeat hEvent ((VMDeat hEvent) event);

else if (event instanceof VMD sconnectEvent)

{
vnDi sconnect Event ((VMDi sconnect Event) event);
}
el se
throw new Error("Unexpected event type");
}
}
/**

* Process breakpoint events
*

*@aram event The breakpoint event in question

*/

private void breakpoi nt Event (Breakpoi nt Event event)

{
String | ocationDescriptor = event.location().toString();
ThreadRef erence thread = event.thread();
faul t Manager . execut e(l ocati onDescriptor, thread, startTime);

}

/**

* A VMD sconnect edException has happened whil e dealing w th another
* event. W need to flush the event queue, dealing only with exit events
* (VMDeath, VMD sconnect) so that we termnate correctly.
*/
synchroni zed voi d handl eD sconnect edExcepti on()
{
Event Queue queue = vm event Queue();
whi |l e (connect ed)
{
try
{

Event Set event Set = queue. renove();
Eventlterator iter = eventSet.eventlterator();
while (iter.hasNext())

{
132

Event event = iter.nextEvent();
if (event instanceof VMDeat hhEvent)

{
vnDeat hEvent ((VMDeat hEvent) event);

else if (event instanceof VM sconnectEvent)

{

}
}
/!l Resume the W
event Set . resune();

vnDi sconnect Event ((VMDi sconnect Event) event);

catch (I nterruptedException exc)

/] ignore

}
/**

* Processes VMStartEvents
*

*@aram event The VMStartEvent in question
*/
private void vnStart Event (VMst art Event event) { }

/**

* Processes nethodEntryEvents
*

*@aram event The Met hodEntryEvent in question
*/
private void net hodEnt ryEvent (Met hodEntryEvent event) { }

/**

* Processes nethodExit Events
*

*@aram event The Met hodExi t Event in question
*/
private voi d net hodExi t Event (Met hodExi t Event event) { }

/**

* Processes StepEvents
*

*@aram event The StepEvent in question
*/
private void stepEvent (StepEvent event)

//Systemout.println(event.location()); // NPA
}

/**

* Processes Mdificati onVat chpoi nt Events
*

*@aram event The Modificati onWat chpoint Event in question
*/
private void nodificationWat chpoi nt Event (Modi fi cati onWat chpoi nt Event event)

{}
/**

* Processes AccessVat chpoi nt Events
*

*@aram event The AccessWat chpoint Event in question

133

*/
private voi d accessWat chpoi nt Event (AccessWat chpoi nt Event event) { }

/**

* Processes ThreadDeat hEvents
*

*@aram event The ThreadDeat hEvent in question
*/
voi d t hreadDeat hEvent (Thr eadDeat hEvent event) { }

/**

* A new cl ass has been | oaded. Set watchpoints on each of its fields
*

*@aram event The C assPrepareEvent in question

*/
private void cl assPrepar eEvent (Cl assPrepar eEvent event)
{
try
{
Ref erenceType ref Type = event.referenceType();
/] Store a reference to the ReferenceType
Si npl eReposi tory. addd assType((Cl assType) ref Type);
/] Systemout.println(ref Type.nanme()); // NPA
/'l Resol ve preconfigured breakpoints ...
Li st locations = refType. all Li neLocations();
for (lterator iter = locations.iterator(); iter.hasNext();)
{
Location location = (Location) iter.next();
String descriptor = location.toString();
i f (faul t Manager. contai nsLocati on(descriptor))
{
Systemout. println(new StringBuffer()
.append("-- Breakpoint set at ")
.append(l ocation). append(" --"));
/] Create the request
Event Request event Request = addBr eakpoi nt Request (| ocati on);
/1 Add the event request to the helper ... to be used for
/I other purposes ... Kinda ugly, though ...
Si npl eReposi tory. addEvent Request (descri ptor, event Request);
/] Reset the state of the fault mapped to the descriptor...
faul t Manager . r eset (descriptor);
/] Determine if it needs to be initially disabled
i f (!faultManager.isEnabl ed(descriptor))
{
event Request . di sabl e() ;
}
}
}
if (refType. nane().equal s(Si npl eTrek. SI MPLE_CLI ENT_CLASS))
{
faul t Manager . set Si npl eHel per A assType((d assType) ref Type);
}
} .
catch (Exception e)
{

134

/le.printStackTrace(); // NPA
/lignore

/**

* Processes ExceptionEvents
*

*@aram event The ExceptionEvent in question
*/
private void excepti onEvent (ExceptionEvent event) { }

/**

* Processes VMDeat hEvent s
*

*@aram event The VMDeat hEvent in question
*/

public voi d vnDeat hEvent (VMDeat hEvent event)
{

}
/**

* Processes VMD sconnect Events
*

*@aram event The VMDi sconnect Event in question
*/
public voi d vnD sconnect Event (VMD sconnect Event event)

{
}

vDi ed = true;

connected = fal se;

135

E-4 FAULT.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

i mport java.util.*;
/**

* Abstract Fault class that enconpasses logic for a general SIMPLE fault
*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed July 30, 2002
*/
public abstract class Fault
{
/**
* (Constant indicating an infinite val ue
*/
public final static int INDEFINTE = -1;
/**
* (Constant indicating a random val ue
*/
public final static String RANDOM VALUE = " RANDOM VALUE";
/**
* Used to generate default faultNanes
*/
private static int counter = O;
/**
* The designated name of the fault
*/
protected String faultName = nul |;
/**
* The dass to apply the fault in.
*/
protected String className = nul |;
/**
* The exact |ine nunber of the fault occurrence
*/
protected int lineNo = -1;
/**
* A conbination of the classNane and |lineNo ... Used as a key to the
* fault hashMap objects in the Fault Manager
*/
protected String descriptor = null;
/**
* Used to indicate the how many tinme the fault will occur
*/

protected int nunOfl nvocations = | NDEFI NI TE;

/**

136

* Used as a current counter for cal cul ati ng nuntX I nvocati ons
*/
protected int currNunOfl nvocations = | NDEFI NI TE;

/**

* Defines the probability of the fault occurrence
*/
protected double probability = 1.0;

/**

* Defines the start time of the fault.
*/

protected long startTi me = | NDEFI NI TE;
/**

* Defines the end time of the fault.

*/

protected | ong endTi ne = | NDEFI NI TE;

/**

* Used for enabling/disabling the fault
*/

prot ect ed bool ean i sEnabl ed = true;

/**

* Description of the Field

*/

prot ect ed bool ean i sEnabl edSetting = true;
/**

* Description of the Field

*/

prot ected bool ean isLocati onActivated = fal se;

/**

* Constructor for the Fault object

*

*@aram classNane Class nane to apply fault to

*@aram |ineNo Source line to apply fault to

*@aram faultName Description of the Paraneter

*/
public Fault(String faul tNane, String className, int |ineNo)
{

this.faultNane = fault Nane;
this.classNane = cl assNane;
this.lineNo = |ineNo;
this.descriptor = classNane + ":" + |ineNo;
if (faultName == null || faultNanme.length() == 0)
this.faultNane = "fault " + counter;
count er ++;
}
}
/**

* Constructor for the Fault object
*

*@aram classNane Description of the Paraneter

*@aram |ineNo Description of the Paraneter
*/

public Fault(String classNane, int |ineNo)

{

137

this.faultNane = "fault " + counter;

count er ++;

this.classNane = cl assNane;

this.lineNo = |ineNo;

this.descriptor = classNane + ":" + |ineNo;
}
/**

* Gets the faultName attribute of the Fault object

*

*@eturn The faul t Nane val ue
*/

public String getFaul t Name()

{

}
/**

* Gets the className attribute of the Fault object

*

*@eturn The cl assNane val ue
*/

public String getd assNane()

{

}
/**

* Gets the lineNo attribute of the Fault object

*

return faultNanme;

return cl assNane;

*@eturn The |ineNo val ue
*/
public int getLineNo()
{
return |ineNo;
}
/**

* Gets the | ocDescriptor attribute of the Fault object

*

*@eturn The | ocDescri ptor val ue
*
/
public String getDescriptor()
{

}
/**

* Sets the nunXInvocations attribute of the Fault object
*
*@aram nunOf |l nvocati ons The new nunCOf I nvocati ons val ue
*/

public void set NunmX | nvocati ons(int nunmOf | nvocati ons)

{

return descriptor;

t hi s. nun | nvocati ons = nunOf | nvocat i ons;
this.currNunCf I nvocati ons = nunOf | nvocati ons;

}
/**

* Gets the nunOInvocations attribute of the Fault object
*

*@eturn The nunOf | nvocati ons val ue

138

*/
public int getNunOf I nvocations()
{

}
/**

* Gets the currNunt¥Invocations attribute of the Fault object
*

*@eturn The nunOf | nvocati ons val ue
*/

public int getCurrNunCfl nvocations()

{

}
/**

* Sets the probability attribute of the Fault object

*

*@aram probability The new probability val ue
*/

public void setProbability(doubl e probability)

{

}
/**

* Gets the probability attribute of the Fault object

*

*@eturn The probability val ue

return numc | nvocati ons;

return this.currNuntf | nvocat i ons;

this.probability = probability;

*/
publ i c doubl e getProbability()
{
return probability;
}
/**

* Sets the injectionStartTinme attribute of the Fault object

*

*@aram startTinme The new startTi me val ue

*/
public void setStartTi me(long startTi ne)
{
this.startTine = startTi ne;
}
/**

* Gets the injectionStartTinme attribute of the Fault object

*

*@eturn The injectionStartTi me val ue
*/
public long getStartTi me()
{
return startTi nme;
}
/**

* Sets the injectionEndTinme attribute of the Fault object

*

*@aram endTinme The new endTi ne val ue
*/
public voi d set EndTi ne(l ong endTi ne)

139

this.endTi ne = endTi ne;

}
/**

* Gets the injectionEndTinme attribute of the Fault object

*

*@eturn The i nj ecti onEndTi ne val ue
*/
public | ong get EndTi ne()
{
return endTi ne;
}
/**
* Determnes whether the fault can be injected given the specified
* boundary tinmes ... Dependent upon probability and currNunCf | nvocati ons

*

*@aram currentTine Description of the Paraneter

*@eturn Description of the Return Val ue
*/
publ i c bool ean tineTol nject(long currentTi ne)
{
/1 1f the fault has been disabled, then return inmrediately ... This
// doesn't mean that it should be expired ...
if (!isEnabled)
{

return fal se;

/1 1f there aren't any nore invocations, expire the fault
if (currNunfInvocations == 0)

{
i sEnabl ed = fal se;
return fal se;
}
if (Math.randon() > probability)
{
return fal se;
}
/Il The below wi |l cause a true
if (startTime < 0 || currentTine >= startTi ne)
{
if (endTime < 0 || currentTine < endTi ne)
{
/'l Update the current tally of invocations ...
if (currNunfInvocations > 0)
{
curr Nunf | nvocat i ons- - ;
}
return true;
}
// 1f we are at this point, then the fault should be expired ...
i sEnabl ed = fal se;
}
return fal se;
}
/**

140

* Gets the expired attribute of the Fault object

*

*@eturn The expired val ue

*/
publ i c bool ean i sExpired(long currentTi ne)
{

/] Check to see if the fault has expired ...
if (currNunOf I nvocations == 0 || endTime > currentTine)

i sEnabl ed = fal se;
return true;

return fal se;

}
/**

* Sets the enabl edSetting attribute of the Fault object

*

*@aram isEnabl edSetting The new enabl edSetting val ue
*/

public voi d set Enabl edSetti ng(bool ean i sEnabl edSetting)

{

}
/**

* Sets the enable attribute of the Fault object

*

*@aram isEnabled The new enabl ed val ue
*/
public voi d set Enabl ed(bool ean i sEnabl ed)

{
}

/**

* Gets the enabled attribute of the Fault object

*

this.isEnabl edSetting = i sEnabl edSetting;

this.isEnabl ed = i sEnabl ed;

:@et urn The enabl ed val ue
pu{)I i ¢ bool ean i sEnabl ed()
{ return i sEnabl ed;
}
/**

* Sets the locationActivated attribute of the Fault object
*

*@aram islLocationActivated The new | ocati onActivated val ue
*/
public void setlLocationActivated(bool ean i sLocati onActi vated)

{
}

/**

* Gets the locationActivated attribute of the Fault object
*

this.isLocationActivated = i sLocationActi vated;

*@eturn The | ocati onActivat ed val ue
*/

publ i c bool ean i sLocationActivat ed()

{

return i sLocationActivat ed;

141

}
/**

* The nethod that resets the state of the fault. Fault Subcl asses nust
* provide actual inplenentation.

*/
public void reset()
{
curr Nunf | nvocat i ons = nuntf | nvocati ons;
i sEnabl ed = (i sEnabl edSetting &% !isLocati onActi vat ed);
}
/**

* The method that gets executed. Fault Subcl asses must provide actual

* inplenmentation.
*

*@aram thread Thread that breakpoint was invoked in
*@aram vm Virtual Machine that SUT is running under
*@aram frame Stack frame that breakpoint was invoked in
*@ar am object Reference ObjectReference passed in by event-thread
*@aram currentTine Current time passed in by event-thread

*/

public abstract void execute(ThreadReference thread, Virtual Machine vm
St ackFrame frame, bjectReference objectReference, long currentTine);

142

E-5 FAULTMANAGER.JAVA
package si npl e;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

i mport java.util.*;

import sinple.fault.*;
inmport sinple.util.~*;

i mport java.util.List;

/**

* The Fault Manager is responsible for the managerment and execution of

* user-defined faults.
*

* @ut hor Nei | Acanti al do
* @ut hor Chris Acanti al do
*@reat ed May 1, 2002
*/

public class Faul t Manager

{

/'l Values are Arraylist objects
private HashMap cf gFault Map = new HashMap() ;

/Il Values are Fault array objects ... Used for fast iteration ...
private HashMap excFaul t Map = new HashMap() ;

/1 Just a tenp variable
private Fault[] tenp = new Fault[0];

/1 Holds the hjectReference to the client-side SFI hel per class
private bject Reference sinpl eHel per Obj ect Ref erence = nul | ;

/1 Holds the ClassType to the client-side SFI hel per class
private O assType sinpl eHel perd assType = nul | ;

// Holds a Method reference to the client-side SFI hel per class nethods
private Method sinpl eHel per Constructor = null;

// Holds a Method reference to the client-side SFI hel per class nethods
private Method sinpl eHel per Met hod = nul | ;

/] Tenp arraylist to represent no argunents when a nethod is invoked
private final static ArrayList noArgs = new Arraylist();

/**
* Determines whether tine is handl ed by the Test Harness or by the

* client. Performance is better when tine is handl ed by the client, but
* this means invoking the pre-instrunentation tool on rel evant SUT

* classes ... Trade-off here ...

*/

public static bool ean isTinelnstrunentedOnClient = fal se;
/**

* Description of the Field

*/

public | ong overhead = 0; // NPA -- 062602

143

/**
*
*

*

Sets the sinpl eHel per Obj ect Reference attribute (and others) of the
Faul t Manager obj ect.

*@ar am si npl eHel per d assType The new si npl eHel per d assType val ue

*/

public voi d setSinpl eHel perd assType(Cl assType si npl eHel per d assType)

{

}

/**

*

*/

/'l Access the client-side SI MPLE hel per and keep appropriate references
/Il to it so that SIMPLE can communicate with it during Fault-1njection
Il testing ...

this. sinpl eHel perd assType = si npl eHel per d assType;

/! Reinitializes reflective conponents to be used | ater
i ni t Si npl eHel per Conponents() ;
/1 NPA -- 070902

// Iniitialize to null, so we can find its reference each tine the

/] fault-injection tests are re-executed
si npl eHel per Obj ect Reference = nul | ;

Reinitializes reflective conponents

private void initSinpl eHel per Conponent s()

{

}

/**

*

si npl eHel per Constructor = null;
si npl eHel per Met hod = nul | ;

/1 Check if exists -- NPA 072502
if (sinpleHel perd assType == null)

return;

}

Li st met hods = si npl eHel per G assType. al | Met hods() ;
int size = nethods. size();

for (int i =0; i < size; i++4)
{
// Don't bother going on if we already have what we need. This

/1 SUT could be pretty lengthy ...
i f (sinpleHel perConstructor !'= null && sinpleHel perMethod !'= null)

br eak;

}

Met hod net hod = (Met hod) met hods. get (i) ;
i f (method. name(). equal s("getdientCurrentTine"))

{
si npl eHel per Met hod = met hod,;

}
else if (method.toString().indexX (SinpleTrek.SI MPLE _CLI ENT_CLASS
+ ".<init>") 1= -1)

{
}

si npl eHel per Constructor = met hod;

Basi cal |y answers the question: Does fault bucket exist for this

144

* descriptor?
*

*@aram descriptor Location descriptor of the fault
*@eturn True if fault bucket exists. False, otherw se.
*/

publ i c bool ean containsLocation(String descriptor)

{
}

/**

* Adds a fault to the appropriate fault bucket.

*

*@aram fault The fault to add

return cfgFaul t Map. cont ai nsKey(descriptor);

*/
public void add(Fault fault)
{
String descriptor = fault.getDescriptor();
Arrayli st faul tBucket = (ArraylList) cfgFaul t Map. get (descriptor);
if (faul tBucket == null)
/] Create a fault bucket if it doesn't exist yet
faul t Bucket = new ArraylList();
cf gFaul t Map. put (descri ptor, faultBucket);
}
faul t Bucket. add(faul t);
/1 Add the fault to the fault bucket
/1 Simul taneously update the excFaul tMap ...
excFaul t Map. renove(descriptor);
excFaul t Map. put (descri ptor, faul tBucket.toArray(tenp));
}
/**

* Renoves the fault
*

*@aram fault The fault to be renmpved

*/
public void renove(Fault fault)
{
String descriptor = fault.getDescriptor();
Arrayli st faul tBucket = (ArraylList) cfgFaul t Map. get(descriptor);
if (faul tBucket != null)
{
/1 Rermove the fault to the bucket
faul t Bucket. renmove(fault);
/1 Sinul taneously update the excFaultMap ...
excFaul t Map. renove(descriptor);
excFaul t Map. put (descri ptor, faul tBucket.toArray(tenp));
}
el se
{
excFaul t Map. renove(descriptor);
}
}
/**

* Executes the faults associated with the location accordingly. Need to
try to minimze the overhead here ...

145

*@aram descriptor The |location descriptor describing the breakpoint.

*@aram thread The thread that the breakpoint was invoked.
*@aram startTine The start tine
*/

public void execute(String descriptor, ThreadReference thread,
| ong startTine)

Faul t[] faults = (Fault[]) excFaul t Map. get(descriptor);

if (faults !'= null)
{
try
{ .
long currentTine = -1;
/] Figure out an approximate current time ... (expensive)

/1 This depends on what type of tinme handling was sel ected by
/'l the tester/devel oper
if (isTinelnstrumentedOndient)

{
// Time is handl ed by the SUT
i f (sinpleHel per Obj ect Reference == nul |)
si npl eHel per Obj ect Ref erence =
si npl eHel per d assType. newl nst ance(t hr ead,
si npl eHel per Constructor, noArgs, 0);
}
LongVal ue currentTi neVal ue = (LongVal ue)
si npl eHel per Obj ect Ref er ence. i nvokeMet hod(t hr ead,
si npl eHel per Met hod, noArgs, 0);
current Time = currentTi meVal ue. | ongVal ue();
}
el se
// Time is handl ed by the SIMPLE
currentTime = SystemcurrentTimeMI1is() - startTine;
currentTinme -= overhead; // NPA -- 062602
}

I ong overheadStart = SystemcurrentTineMIlis();
/1 NPA -- 062602

/]l Get vm frane, and objectReference fromthe thread ...
Vi rtual Machi ne vm = thread. vi rtual Machi ne();

St ackFrame frame = thread. frame(0);
bj ect Ref erence obj ect Reference = thread. frame(0).thi sCbject();

/] Bool ean used for deternining whether a breakpoint can be
/'l disabled or not ...(NPA -- 07/27/02)
bool ean di sabl eFault = true;

/] Execute the faults for this descriptor
for (int i =0; i <faults.length; i++)

faul ts[i].execute(thread, vm frame, objectReference,
currentTine);

/] Check if the breakpoint needs to be active due

// any outstanding faults that are still enabled ...

// That is, we don't want to deactivate the breakpoint if
/l faults are still being injected ...(NPA -- 07/27/02)
if (!faults[i].isExpired(currentTine))

146

di sabl eFault = fal se;

}

/1 1f it's the case that ALL faults at this breakpoint are no
/1 longer active, then renove the breakpoint

/1 (NPA -- 07/27/02)

if (disableFault)

{
Si npl eReposi tory. di sabl eEvent Request (descri ptor);
}
| ong overheadEnd = SystemcurrentTimeMIlis(); // NPA -- 062602
over head += (overheadEnd - overheadStart); // NPA -- 062602

catch (Exception e)

/!l lgnore for now ...

}
/**

* Resets all the faults to their uninitialized states
*

*@aram descriptor Location descriptor of the breakpoint
*/
public void reset(String descriptor)

{

over head = O;
/1 NPA -- 062602

si npl eHel per Obj ect Reference = nul | ;

/] si npl eHel per Constructor = null; // NPA -- 070902
/'l si npl eHel perMethod = null; // NPA -- 070902

i ni t Si npl eHel per Conponents();

/1 NPA -- 070902

Faul t[] faults = (Fault[]) excFaul t Map. get(descriptor);
if (faults !'= null)

/] Execute the faults for this descriptor
for (int i =0; i <faults.length; i++)

faults[i].reset();

}
/**

* Gets the enabled attribute of the Faul t Manager object

*

*@aram descriptor Description of the Paraneter

*@eturn The enabl ed val ue
*/
publ i c bool ean i sEnabl ed(String descri ptor)

{

bool ean enable = fal se;

Faul t[] faults = (Fault[]) excFaul t Map. get(descriptor);
if (faults !'= null)

{
147

/] Execute the faults for this descriptor
for (int i =0; i < faults.length; i++)

{

/Il As long as one fault is active out of a set of many, then
/] the breakpoint needs to be enabled ...
if (faults[i].isEnabled())

enabl e = true;

}
}
return enabl e;
}
/**

* Gets the faults attribute of the Fault Manager obj ect

*

*@aram descriptor Description of the Paraneter

*@eturn The faults val ue

*/

//public Fault[] getFaults(String descriptor)
/14

I Faul t[] faults = (Fault[]) excFaul t Map. get(descriptor);
I if (faults == null)

/1 {

/1 faults = tenp;

/1

/1 return faults;

/1}

148

E-6 FAULTPARSER.JAVA
package si npl e;

i mport comsun.jdi.¥*;
i mport org.xnl.sax.*;
i nport org.w3c.dom *;
i mport java.util.*;
i mport java.lang.*;

import sinple.fault.*;
inmport sinple.util.~*;

/**

* The Faul tParser class will parse an XML file for desired faults configured
* by the tester/devel oper. Uses a DOMutility to extract this information

* fromthe fault config file. This class is a bit long and definitely is in
* need of inprovenent.

*

* @ut hor Nei| Acantil ado

* @ut hor Chris Acantil ado

*@reat ed April 27, 2002

*/

public class Faul t Parser

{

/] Used to store the parsed faults and will be passed to the Faul t- Manager
/1 when finished.
private Collection faultList = new ArrayLi st();

/] Used to instrunent byte-code of particular classes of the SUT
private SinpleTrek sinpleTrek = new Si npl eTrek();

private bool ean instrumentOnly = fal se;

private String filenane = "faults. xm";

/**

* Constructor for the Faul tParser cl ass
*

*@aram filenane Fil enane of Fault XM file
*@xception Exception Description of the Exception
*/

public FaultParser(String filenane) throws Exception

this.filename = fil enane;

}
/**

* Gets the faults attribute of the FaultParser object
*

*@eturn The faults val ue
*

/
public Fault[] getFaults()

return (Fault[]) faultList.toArray(new Faul t[0]);
}

/**

* Starts parsing of XM.-configured faults
*

*@aram d Docunent to parse ...
*@eturn Description of the Return Val ue
*/

149

publ i c bool ean convert Docunent (Docunent d)

{
El ement faul tsNode = (E enment) d.get Docunent El ermrent () ;
/1
/] Process the "lInstrunent Qpti on" node el ements ...
/1

NodeLi st i nstrunent Opti onNodeLi st =
faul t sNode. get El enent sByTagNane("1 nstrunent Qpti on");
for (int i = 0; i < instrumentQptionNodeList.getLength(); i++)
{
Node i nstrunment Opti onNode = instrument Opti onNodeList.iten(i);

String booleanStr = DOM Wil .get Attr(instrument Qpti onNode,
"i sTinelnstrunentedOnC i ent”, "false");

instrunentOnly = DOM Util. getAttr(instrunment Opti onNode,
"islnstrumentOnly", "false").equals("true");

Faul t Manager . i sTi mel nstrunmentedOnClient =
Bool ean. val ueCf (bool eanStr) . bool eanVal ue();

}

/1
/1l Process the "Fault" node el ements ...
/1
NodeLi st faul t NodeLi st = faul t sNode. get El enent sByTagNane("Fault");
for (int i = 0; i < faultNodeList.getLength(); i++)
{
Node fault Node = faul t NodeList.iten(i);

// W1l ignore fault-entry entirely ... That is, the fault wll NOT
/'l be added to the Faul t Manager ...

String ignore = DOM Wil .getAttr(faul tNode, "ignore", "false");

if (ignore.equal s("true"))

{

cont i nue;
}
String faultName = DOM Util.getAttr(fault Node, "name", "");
String className = DOM Util.getAttr(fault Node, "class", "");
String lineNoStr = DOM Util.getAttr(faultNode, "lineNo", "-1");
String numXX I nvocStr = DOM Util.getAttr(faultNode, "nunOflnvoc",

-1
String probStr = DOM Util.getAttr(faultNode, "prob", "1.0");
String startTimeStr = DOM Wil .getAttr(faul tNode, "startTi me",

"-1");

String endTineStr = DOM Wil .get Attr(faul t Node, "endTine", "-1");
String enabl eSetting = DOM Util.get Attr(faultNode, "enable",
"true");

String activateAt = DOM Wil .getAttr(faul t Node, "activateAt", "");
String deactivateAt = DOM UWil.getAttr(faul tNode, "deactivateAt",
")

int lineNo = Integer.parselnt(lineNoStr);

int nunOfl nvoc = I nteger. parselnt(nunCflnvocStr);

doubl e prob = Doubl e. par seDoubl e(probStr);

long startTime = Long. parseLong(startTi neStr) * 1000;
I ong endTi me = Long. parseLong(endTi neStr) * 1000;
bool ean enabl e = enabl eSetti ng. equal s("true");

Fault fault = null;
i f (faul t Node. hasChi | dNodes())

150

}

/1 Process the individual faults ...
NodelLi st subFaul t NodeLi st = faul t Node. get Chi | dNodes() ;
for (int j = 0; j < subFaul t NodeLi st. getLength(); j++)

{

Node subFaul t Node = subFaul t NodeList.iten(j);
String fault Type = subFaul t Node. get NodeNane() ;

/1 Process PrinlLocal Faul t Node . ..
if (faultType.indexOf("Print) 1= -1)

fault = processPrimtiveFaul t (subFaul t Node,
faul t Name, className, |ineNo, nunXInvoc, prob,
startTime, endTi ne, enable);

add(fault, activateAt, deactivateAt);

}
/1 Process ObjLocal Faul t Node . ..
else if (faultType.indexOr("Ohj") = -1)
fault = processObj ect Faul t (subFaul t Node,
faul t Name, className, |ineNo, nunXInvoc, prob,
startTime, endTi ne, enable);
add(fault, activateAt, deactivateAt);
}

/] Exception Fault .
el se if (faultType.equal s("Exception"))

{
processSpeci al i zedFaul t (" Excepti on", subFaul t Node,
cl assNane, |ineNo, nun®Oflnvoc, prob, startTine,
endTi ne, enabl e);
}

/'l Menory Exhaust Fault ...
else if (faultType.equal s("Menory"))

{
processSpeci al i zedFaul t (" Menory", subFaul t Node,
cl assNane, |ineNo, nunOflnvoc, prob, startTine,
endTi ne, enabl e);
}

/'l Processor Exhaust Fault
else if (faultType.equal s("Processor"))

{
processSpeci al i zedFaul t (" Processor”, subFaul t Node,
cl assNane, |ineNo, nunOflnvoc, prob, startTine,
endTi ne, enabl e);
}

/] Processor Exhaust Fault ...
else if (faultType.equal s("Delay"))

{
processSpeci al i zedFaul t (" Del ay", subFaul t Node,
cl assNane, |ineNo, nun®OfI|nvoc, prob, startTine,
endTi ne, enabl e);
}

/1 Process "hacked" faults that are really tine indicators ...
NodeLi st start Ti neNodelLi st =

151

faul t sNode. get El enent sByTagNanme("Start Ti me") ;

for (int i =0; i

< startTi meNodeLi st. get Length(); i

Node start Ti meNode = start Ti neNodeList.iten(i);

I W

/] be added to the Faul t Manager

String ignore

if (ignore.equal s("true"))

}

/! Do not process the node if fault

cont i nue;

String enabl e

ignore fault-entry entirely ... That

is,

= DOM Uil.getAttr(startTi neNode,

= DOM Uil.getAttr(startTi neNode,

/1 Process information essenti al
String className = DOM Util.getAttr(startTi meNode, "class",
String lineNoStr = DOM Util.getAttr(startTi meNode, "lineNo",
int lineNo = Integer.parselnt(lineNoStr);

/! Add the "hacked"

/1 Need to fix this ...
i f (Faul t Manager . i sTi nel nstrunentedOnd i ent)

++)

the fault will NOT

"ignore", "false");

is indicated to be not enabl ed.

"enabl e", "true");

t o breakpoint configuration.

node into the fault |ist

si npl eTrek. i nstrunent (cl assNane, |ineNo,
Si npl eTr ek. SI MPLE_TI ME_METHOD) ;

{

}

el se

{ .
StartTinme
startTi ne.
startTi ne.
/1 NPA --
faul tList.

}

}

startTi me

072502

add(startTine);

new Start Ti me(cl assNane, |ineNo);
set Probability(1.0);
set Enabl ed(enabl e. equal s("true"));

i f (!Faul t Manager.isTi nelnstrunentedOnCli ent)

Updat eTi ne updat eTi me =
updat eTi me. set Enabl ed(true);
/1 NPA -- 072502

faul tLi st. add(updateTi ne);

}

return instrumentOnly;

}

/**

* Process local-level faults.
* variables with a specified

*

* @ar am
* @ar am
* @ar am
* @ar am
* @ar am
* @ar am
* @ar am
* @ar am
* @ar am
*@eturn

f aul t Name
cl assNane
i neNo
nunmcf | nvoc
pr ob
startTi me
endTi ne
enabl e

f aul t Node

Descri pti
Descri pti
Descri pti
Descri pti
Descri pti
Descri pti
Descri pti
Descri pti
Descri pti
Descri pti

new Updat eTi me() ;

")
"1t

These faults corrupt the primtive |ocal
nmet hod of

on
on
on
on
on
on
on
on
on
on

of
of
of
of
of
of
of
of
of
of

t he
t he
t he
t he
t he
t he
t he
t he
t he
t he

152

a cl ass

Par anet er
Par anet er
Par anet er
Par anet er
Par anet er
Par anet er
Par anet er
Par anet er
Par anet er
Return Val ue

*/

private Fault processPrimtiveFaul t(Node faultNode, String faultNane,
String classNanme, int lineNo, int nunOflnvoc, doubl e prob,

long startTine, |ong endTi ne, bool ean enabl e)

String faultType = faultNode. get NodeNane();

String varNane = DOM Util.getAttr(faul t Node, "varNane",

String val ToSet = DOM Uil .get Attr(faul t Node, "val
Faul t . RANDOM VALUE) ;

PrimtiveFault fault = null;
if (fault Type. equal s("PrimLocal "))

fault = new PrimtiveLocal Faul t (faul t Nane, cl assNane,

var Nare) ;

}

el se

fault = new PrimtiveFi el dFaul t(faul t Nane, cl assNane,

var Nane) ;

}

faul t. set Val ueToSet (val ToSet);

faul t. set NunCf | nvocati ons(nunf | nvoc);
faul t.setProbability(prob);
fault.setStart Ti ne(startTi ne);

faul t.set EndTi me(endTi ne);

faul t. set Enabl edSetting(enabl e);

return fault;

/**

ToSet ",

")

| i neNo,

| i neNo,

* Process field-level object faults. These faults corrupt the field

* object nenmber variables within a class
*

*@ar am cl assNane Name fo class to apply the fault

*@aram |ineNo Li ne nunber within class to apply the fault

*@ar am faul t Nane Description of the Paraneter
*@aram nunOfl nvoc Description of the Paraneter

* @ar am prob Description of the Paraneter
*@aram startTine Description of the Paraneter
*@aram endTi ne Description of the Paraneter
*@aram enabl e Description of the Paraneter
*@ar am faul t Node Description of the Paraneter
*@eturn The final constructed fault
*/

private Fault processObj ect Fault(Node faul t Node, String faultNane,

String className, int lineNo, int nunInvoc, double prob,
long startTine, |ong endTi ne, bool ean enabl e)
{
String faultType = fault Node. get NodeNane();
String varNane = DOM Util.getAttr(faul t Node, "varName", "");
String set ToNull = DOM Util.getAttr(faultNode, "setToNull",
bj ect Fault objectFault = null;
if (faul t Type. equal s("bj Local "))
obj ect Fault = new bj ect Local Faul t (faul t Nane, cl assNang,
var Nare) ;
}
el se

153

"fal se");

i neNo,

* % X X *

*

obj ect Fault = new bj ect Fi el dFaul t (faul t Nane, classNane, |ineNo,
var Nare) ;

}

obj ect Faul t. set Probabi li ty(prob);

obj ect Faul t. set Nun¥ | nvocat i ons(nunCf | nvoc) ;

obj ect Faul t.setStartTi me(startTi ne);

obj ect Faul t. set EndTi ne(start Ti ne);

obj ect Faul t. set Enabl edSetti ng(enabl e);

obj ect Faul t. set ToNul | (set ToNul | . equal s("true"));

NodelLi st subFaul t NodeLi st = faul t Node. get Chi | dNodes() ;
for (int k = 0; k < subFaul t NodeLi st.getLength(); k++)
{
Node subFaul t Node = subFaul t NodeLi st.iten(k);
String nodeNane = subFaul t Node. get NodeNane() ;

Fault fault = null;
i f (nodeNane. equal s("Obj Fiel d"))

fault = processbj ect Faul t (subFaul t Node, faul t Name, cl assNang,
i neNo, nunmOfInvoc, prob, startTinme, endTine, enable);
obj ect Faul t. add(faul t);

}
el se if (nodeName. equal s("PrinField"))

fault = processPrimtiveFaul t(subFaul t Node, faultNaneg,
cl assNanme, |ineNo, nunInvoc, prob, startTine, endTing,
enabl e) ;

obj ect Faul t. add(faul t);

}

return objectFaul t;

This nmethod will process the 'specialized faults found within the
Fault config file. These faults are specialized due to the fact that
they invoke pre-instrunmentation actions on the byte-code of conpiled
SUT cl asses.

*@aram identifier Ildentifies what type of fault: Exc, Mem Dy, Prc
*@aram classNane The nane of the class to instrunent the fault
*@aram |ineNo The line nunber to instrunent the fault

*@ar am faul t Node Description of the Paraneter

*@aram nunOfl nvoc Description of the Paraneter

* @ar am prob Description of the Paraneter
*@aram startTine Description of the Paraneter
*@aram endTi e Description of the Paraneter
*@aram enabl e Description of the Paraneter
*/

private void processSpecializedFault(String identifier, Node faultNode,

{

String className, int lineNo, int numXInvoc, double prob, |ong
startTime, |ong endTinme, bool ean enabl e)

String argStr = DOM Wil .getAttr(faultNode, "arg", "-1");

String whereTolnjectStr = DOM Uil .get Attr(faul t Node, "whereTol nject”,
"before");

int arg = Integer.parselnt(argStr);

bool ean i sBefore = whereTol nject Str. equal s("before");

154

/'l Instrunent accordinlgy ...
if (identifier.equal s("Exception"))
{
si npl eTrek. i nstrunent (cl assNane, |ineNo,
Si npl eTr ek. SI MPLE_EXC _METHOD, startTinme, endTi ne, prob,
nuncf | nvoc, arg, isBefore);

else if (identifier.equals("Processor"))

{

si npl eTrek. i nstrunent (cl assNane, |ineNo,
Si npl eTr ek. SI MPLE_PRC_METHOD, startTime, endTi ne, prob,
nuncf I nvoc, arg, isBefore);

else if (identifier.equals("Mnory"))

{

si npl eTrek. i nstrunent (cl assNane, |ineNo,
Si npl eTr ek. SI MPLE_MEM METHOD, startTime, endTi ne, prob,
nuncf | nvoc, arg, isBefore);

}
else if (identifier.equals("Delay"))

{
si npl eTrek. i nstrunent (cl assNane, |ineNo,
Si npl eTrek. SI MPLE_DLY_METHOD, startTime, endTi ne, prob,
nunCf | nvoc, arg, isBefore);
}
}
/**

* Description of the Method

*

*@aram fault Description of the Paraneter
*@aram activateAt Description of the Paraneter
*@aram deactivateAt Description of the Paraneter
*/

private void add(Fault fault, String activateAt, String deactivateAt)
faul tList.add(fault);

if (activateAt.length() !'= 0)
{

faul t.setLocati onActivated(true);

/] Separate into class and |ine nunber

int index = activateAt.indexOh(":");

String nanme = activateAt.substring(0, index);

String lineNoStr = activateAt.substring(index + 1,
activateAt.length());

int lineNo = Integer.parselnt(lineNoStr);

Locati onFaul t Tri gger trigger =

new Locati onFaul t Tri gger (name, |ineNo, true);
trigger.setFault(fault);
trigger.set NuntX I nvocati ons(faul t.get NunOf I nvocations());
faul tList.add(trigger);

}

if (deactivateAt.length() !'= 0)
{
/] Separate into class and |ine nunber
int index = deactivateAt.indexOh(":");
String name = deactivateAt.substring(0, index);
String lineNoStr = deactivateAt. substring(index + 1,

155

deacti vateAt.length());
int lineNo = Integer.parselnt(lineNoStr);
Locati onFaul t Tri gger trigger =
new Locati onFaul t Tri gger (name, |ineNo, false);
trigger.setFault(fault);
trigger.set NuntX I nvocati ons(faul t.get NunOf |l nvocations());
faul tList.add(trigger);

156

E-7 LOCATIONFAULTTRIGGER.JAVA
package sinple.fault;

i mport sinpl e. Faul t Manager ;
inmport sinple.util.~*;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

/**

* This class represents a breakpoint action where LocationFaultTrigger is set
*

* @ut hor Nei | Acantil ado

* @ut hor Chris Acantil ado

*@reat ed July 25, 2002

*/
public class LocationFaul t Trigger extends Faul t
{

private Fault fault = null;

private bool ean activate = true;

/**

* Qonstructor for the LocationFaul t Tri gger object
*

*@aram faultNanme Description of the Paraneter
*@aram classNane Description of the Paraneter

*@aram |ineNo Description of the Paraneter
*@aram activate Description of the Paraneter
*/

public LocationFaul t Trigger(String faultNane, String classNane, int |ineNo,
bool ean acti vate)

{
super (faul t Name, classNane, |ineNo);
this.activate = activate;

}

/**

* Qonstructor for the LocationFaul t Tri gger object
*

*@aram classNane Description of the Paraneter

*@aram |ineNo Description of the Paraneter
*@aram activate Description of the Paraneter
*/

public LocationFaul t Trigger(String classNane, int |ineNo, bool ean activate)

{

super (cl assNanme, |ineNo);
this.activate = activate;

}
/**

* (Constructor for the setFaul t Descriptors object
*

*@aram fault The new fault val ue
*/
public void setFault(Fault fault)

this.fault = fault;

157

/**

* Gets the faultToTrigger attribute of the LocationFaul tTri gger object

*

*@eturn The faul t ToTri gger val ue
*/
public Fault getFaul t()
{
return fault;
}
/**

* Qonstructor for the execute object

*

*@aram vm N A
*@aram frame N A
*@ar am objectReference NA
*@aram currentTine N A
*@aram thread N A
*/

public voi d execut e(ThreadReference thread, Virtual Machine vm
St ackFrame frame, bjectReference objectReference, |ong currentTi me)

if (tineTolnject(currentTine))

faul t. set Enabl ed(activate);
if (activate)

Si npl eReposi tory. enabl eEvent Request (faul t. get Descriptor());

}

/**

* Resets faults back to original state
*/

public void reset()

{
}

super.reset();

158

E-8 OBJECTFAULT.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

i mport java.util.*;

/**
* The hjectFault class contains common attributes and nmethods for the
* (bjectFieldFault and ObjectVar Fault cl asses

*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 27, 2002
*/
public abstract class ObjectFault extends Fault
{
/**
* The nane of the object attribute to corrupt
*/
protected String variabl eNane = nul | ;
/**
* WIIl contain the primtive attribute faults of the object
*/
protected Collection subFaults = new ArrayList();
/**
* Arrays will be used for expediancy.
*/
protected Fault[] subFaultArray = new Faul t[0];
/**
* Determ nes whether the object itself is to be set to null
*/
prot ected bool ean set ToNul |l = fal se;
/**

* Constructor for the bjectFault object

*

*@ar am faul t Nane Description of the Paraneter
*@ar am cl assNane Description of the Paraneter
*@aram |ineNo Description of the Paraneter
*@aram variabl eName Description of the Paraneter
*/

public ObjectFault(String faul tName, String classNanme, int |ineNo,
String vari abl eNane)

{
super (faul t Name, classNane, |ineNo);
t hi s.variabl eNane = vari abl eNane;

}

/**

* Constructor for the bjectFault object

*

*@ar am cl assNane Name of class that fault is to be applied to
*@aram |ineNo Li ne nunber of class that fault is be applied to
*@aram variabl eName Nane of variable

159

*/
public ObjectFault(String classNanme, int lineNo, String variabl eNane)
{
super (cl assNane, |ineNo);
t hi s.variabl eNane = vari abl eNane;

}
/**

* Sets the toNull attribute of the ObjectFault object

*

*@aram setToNull The new toNull val ue
*/
public void setToNul | (bool ean set ToNul |)
{
this.set ToNull = set ToNull;
}
/**

* Gets the set ToNull attribute of the (bjectFault object

*

*@eturn The set ToNul | val ue
*/
publ i c bool ean i sSet ToNul | ()
{
return set ToNul | ;
}
/**

* Description of the Method
*@aram fault Description of the Paraneter
*/
public void add(Fault fault)
{
subFaul ts. add(faul t);
/1 Add the fault
/'l we now have to reset the array
subFault Array = (Fault[]) subFaults.toArray(new Fault[0]);

/**

* Renove the fault

*

*@aram fault The fault to renove
*/

public void renove(Fault fault)

subFaul ts. renove(fault);

/1 Rerove the fault

/'l we now have to reset the array

subFaultArray = (Fault[]) subFaults.toArray(new Fault[0]);

}
/**
* Resets fault state ...
*/
public void reset()
{
/] Reset all sub-faults
for (int i = 0; i < subFaultArray.length; i++)
{

160

subFault Array[i].reset();
}

super.reset();

161

E-9 OBJECTFIELDFAULT.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport comsun.jdi.event.*;

i mport com sun.jdi.request.*;

i mport com sun.tool s. exanpl e. debug. bdi . *;

i mport com sun.tool s. exanpl e. debug. expr. *;

i mport java.util.*;
inmport sinple.util.~*;

/**
* The bjectFieldFault class represents faults that deal wth
attributes

* that are not primtive types. That is, they are object types.
*

* @ut hor Nei| Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 27, 2002
*/
public class ObjectFieldFault extends bjectFault

{

/'l Cached to inprove performance
private TypeConponent field = null;

field

I/l 1t could be the case that the frane is static where an Obj ect Ref er ence
/'l is not available. Thus, we need to keep a reference to the d assType

// around ... W get the class type fromthe Fault class where it keeps

/'l an internal collection around for that purpose ... yeah, | know ...
/1 This was added on after the fact
private O assType cl assType = nul | ;

/**

* Qonstructor for the bjectFiel dFault object

*

*@ar am faul t Nane Description of the Paraneter
*@ar am cl assNane Description of the Paraneter
*@aram |ineNo Description of the Paraneter
*@aram variabl eName Description of the Paraneter
*/

public ObjectFieldFault(String faul t Name, String classNane, int |ineNo,
String vari abl eNane)
{

super (faul t Name, classNane, |ineNo, variabl eNane);

/**

* Qonstructor for the bjectFiel dFault object

*

*@ar am cl assNane Name of class to apply fault to
*@aram |ineNo Source line nunber of class to apply fault to
*@aram variabl eName Nane of object variable to apply fault to
*/
public ObjectFieldFault(String classNanme, int lineNo, String variabl eNane)
{
super (cl assName, |ineNo, variabl eName);
}
/**

* Called by Faul t-Manager to invoke faults
162

*

*@aram vm Virtual Machi ne provided by the JPDA

* @ar am obj Ref oj ect Ref er ence
*@aram frame Frame that breakpoi nt was invoked
*@aram thread Description of the Paraneter

*@aram currentTine The current tinme that tine-stanped

*/

public voi d execut e(ThreadReference thread, Virtual Machine vm
St ackFrame frame, bjectReference obj Ref, |ong currentTine)

{
if (!tineTolnject(currentTine))
/Il 1t's not tinme to inject yet
return;
}
if (objRef == null)
/!l 1f we are here then the frane is a static frame ...
if (classType == null)
cl assType = Si npl eReposi tory. get Cl assType(cl assNane);
execut el nStati cFrane(thread, vm frame, classType, currentTine);
}
el se
/!l 1f we are here then the frane is a non-static franme ...
execut el nNonSt ati cFrane(thread, vm frane, objRef, currentTine);
}
}
/**

* Executes the fault as mandated by the Fault Manager (Non-Static Frame

* Version)
*

*@aram vm Virtual Machi ne provided by the JPDA
*@ar am obj Ref bj ect Ref erence

*@aram frame Frame that breakpoi nt was invoked
*@aram thread Description of the Paraneter

*@aram currentTine The current tinme that tine-stanped
*/
public voi d execut el nNonSt at i cFr ame(Thr eadRef er ence t hr ead,
Vi rtual Machi ne vm StackFranme frame, ObjectReference obj Ref,
I ong currentTi ne)

{
/] Gotta be careful when making changes in this nmethod ...
try
{
if (field == null)
{
/] Get the Object attribute in question ...
Ref erenceType ref Typ = obj Ref.referenceType();
field = (Field) refTyp.fiel dByNane(vari abl eNane);
if (field == null)
{
return;
}
}

/1 At this point, we have the (bject attribute that we
/|l are searching for

163

/] Set the Object attribute to NULL if configured to do so ...
if (setToNull)

{
obj Ref . set Val ue((Field) field, null);
return;
}
/1 Now corrupt the attributes of the object as defined by the
/l original fault definition ... W need to get is current

/1l instance, first
bj ect Ref erence obj ect Ref =
(oj ect Ref erence) obj Ref.getValue((Field) field);

for (int i = 0; i < subFaultArray.length; i++)

subFault Array[i].execute(thread, vm franme, objectRef,
currentTine);

}

}
catch (Exception e)

/!l lgnore for now ...

}
/**

* Executes the fault as mandated by the Fault Manager (Static Frane

* Version)
*

*@aram vm Virtual Machi ne provided by the JPDA
*@aram frame Frame that breakpoi nt was invoked
*@aram thread Description of the Paraneter

*@aram currentTine The current tinme that tine-stanped
*@ar am cl assType Description of the Paraneter

*/

public voi d executel nStati cFrame(Thr eadRef erence thread, Virtual Machine vm
St ackFrame frame, d assType cl assType, |ong current Ti ne)
{

try
{
if (field == null)
field = (Field) classType.fieldByNanme(vari abl eNane) ;
if (field == null)
{

}

return;

/1 At this point, we have the (bject attribute that we
/] are searching for
if (setToNull)

{
/] Here is where we set the object to null
cl assType. setVal ue((Field) field, null);
return;
}
/1 Now corrupt the attributes of the object as defined by the
/l original fault definition ... W need to get its current

/1l instance first
(bj ect Ref erence obj ect Ref =
(oj ect Ref erence) cl assType. get Val ue((Field) field);

164

for (int i = 0; i < subFaultArray.length; i++)

subFaul t Array[i].execute(thread, vm franme, objectRef,
currentTinme);

}

}
catch (Exception e)

/!l lgnore for now ...

}
/**

* Reinitializes cached variabl es
*/
public void reset()

field = null;

cl assType = null;
super.reset();

165

E-10 OBJECTLOCALFAULT.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport comsun.jdi.event.*;

i mport com sun.jdi.request.*;

i mport com sun.tool s. exanpl e. debug. bdi . *;

i mport com sun.tool s. exanpl e. debug. expr. *;

i mport java.util.*;

/**

* The (hjectlocal Fault classes represents faults that are applied to |ocal

* variables that are not primtives. That is, they are object instances.
*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 27, 2002
*/
public class ObjectLocal Fault extends bjectFault

{

/'l Cached to inprove performance ...
private Local Variable local Var = nul|;

/**

* (Qonstructor for the bjectLocal Fault object
*

*@ar am faul t Nane Description of the Paraneter
*@ar am cl assNane Description of the Paraneter
*@aram |ineNo Description of the Paraneter
*@aram variabl eName Description of the Paraneter
*/

public ObjectLocal Fault(String faul t Name, String classNane, int |ineNo,
String vari abl eNane)

super (faul t Name, classNane, |ineNo, variabl eNane);

/**

* (Qonstructor for the bjectLocal Fault object
*

*@ar am cl assNane Name of class to apply fault to

*@aram |ineNo Source line nunber of class to apply fault to
*@aram variabl eName Nane of object variable to apply fault to

*/

public ObjectlLocal Fault(String classNanme, int lineNo, String variabl eNane)
{

super (cl assName, |ineNo, variabl eName);

/**

* Executes the fault as mandated by the Fault Manager
*

*@aram vm Virtual Machi ne provided by the JPDA
*@ar am obj Ref bj ect Ref er ence

*@aram frame Frame that breakpoi nt was invoked
*@aram thread Description of the Paraneter

*@aram currentTine The current tinme that tine-stanped
*/

public voi d execut e(ThreadReference thread, Virtual Machine vm
St ackFranme franme, ObjectReference objRef, long currentTinme)

166

if (!tineTolnject(currentTine))

// 1t's not tinme to inject yet

return;
}
/] Gotta be careful when making changes in this nmethod ...
try
{
if (localVar == null)

ocal Var = frame. visi bl eVari abl eByName(vari abl eNane) ;

f (local Var == null)
return;

|
i
{
}

/] Set the Object attribute to NULL if configured to do so ...
if (setToNull)

{
frane. set Val ue(l ocal Var, null);
return;
}
/1 Now corrupt the attributes of the object as defined by the
/l original fault definition ... W need to get its current

/1 instance first
(bj ect Ref erence obj ect Ref =

(oj ect Ref erence) frane. getVal ue(l ocal Var) ;
for (int i = 0; i < subFaultArray.length; i++)

subFault Array[i].execute(thread, vm franme, objectRef,
currentTinme);

}

E:atch (Exception e)
/1 lgnore for now ...
}
/**
:/ Resets cached vari abl es

public void reset()

| ocal Var = null;
super.reset();

167

E-11 PRIMITIVEFAULT.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun. tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

i mport java.util.*;

inmport sinple.util.Util;

/**
* Abstract class that enconpasses common attributes and nmet hods for the
* PrimtiveFieldFault and PrimtiveVariabl eFault cl asses.
*
* @ut hor Nei| Acantil ado
* @ut hor Chris Acantil ado

*@reat ed April 27, 2002

*/

public abstract class PrimtiveFault extends Fault

{

/**

* Nane of the variable (either field or |ocal)
*/

protected String variabl eNane = nul | ;

/**

* Textual description of the value to be set.
*/

protected String val ToSet = null;

/**

* Actual value to be set ... (Serves as a cache for better perfornance)
*/

protected Val ue val ueToSet = null;

/**

* Qonstructor for the PrinmitiveFault object
*

*@ar am faul t Nane Description of the Paraneter
*@ar am cl assNane Description of the Paraneter
*@aram |ineNo Description of the Paraneter
*@aram variabl eName Description of the Paraneter
*/

public PrimtiveFault(String faultNane, String classNanme, int |ineNo,
String vari abl eNane)

{
super (faul t Name, classNane, |ineNo);
t hi s.variabl eNane = vari abl eNane;

}

/**

* Qonstructor for the PrinmitiveFault object
*
*@ar am cl assNane Name of class to apply fault to
*@aram |ineNo Source line of class to apply fault to
*@aram variabl eName Nane of the variable in question
*/
public PrimtiveFault(String classNanme, int |ineNo,
String vari abl eNane)

168

super (cl assNane, |ineNo);
t hi s.variabl eNane = vari abl eNane;

}
/**

* Sets the valueToSet attribute of the PrimtiveFault object

*

*@aram val ToSet The new val ueToSet val ue
*/
public void setVal ueToSet (String val ToSet)

/Il Again, this is the textual description
this.val ToSet = val ToSet ;

}
/**

* Gets the valueToSet attribute of the PrimtiveFault object

*

*@aram vm The Virtual Machine supplied by the JPDA for the
* br eakpoi nt

*@aram typeNane Description of the Paraneter

*@eturn The val ueToSet val ue

*/

publ i c Val ue getVal ueToSet (String typeNanme, Virtual Machine vm

/] Calculate a randomvalue and return it.
i f (val ToSet. equal s(RANDOM VALUE))
{
return Util.createRandonVal ue(typeNane, vn);
}
/! 1f a cached val ue doesn't exist, create one ...
if (valueToSet == null)
{

return Util.createVal ue(typeNane, val ToSet, vn);
}

/! Return the val ue

return val ueToSet;

/**

* Resets all relevant values when tests are restarted
*/
public void reset()

super.reset();

169

E-12 PRIMITIVEFIELDFAULT.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun.tool s. exanpl e. debug. bdi . *;

i mport java.util.*;
inmport sinple.util.~*;

/**

* The PrimtiveFieldFault class is responsible for accessing and corrupting

* class nenber vari abl es.
*

* @ut hor Nei| Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 27, 2002
*/
public class PrimtiveFi el dFault extends PrimtiveFault
{
/'l Cached variables ... Attenpts to inprove performance.

/Il W1l be reset each tine tests are rel oaded
private TypeConponent field = null;
private String typeNane = null;

/Il 1t could be the case that the frane is static where an Obj ect Ref er ence
/1 is not available. Thus, we need to keep a reference to the d assType
/] around ... W get the class type fromthe Fault class where it keeps
/'l an internal collection around for that purpose ... yeah, | know ...

/1 This was added on after the fact

private O assType cl assType = nul | ;

/**

* Qonstructor for the PrimtiveFieldFault object
*

*@ar am faul t Nane Description of the Paraneter
*@ar am cl assNane Description of the Paraneter
*@aram |ineNo Description of the Paraneter
*@aram variabl eName Description of the Paraneter
*/

public PrimtiveFieldFault(String faul tNanme, String classNanme, int |ineNo,
String vari abl eNane)
{

super (faul t Name, classNane, |ineNo, variabl eNane);

/**

* Qonstructor for the PrimtiveFieldFault object
*

*@ar am cl assNane O assnane to apply fault
*@aram |ineNo Li ne nunber to apply fault at
*@aram variabl eName Nane of nenber variable

*/

public PrimtiveFieldFault(String classNane, int lineNo, String
vari abl eNane)

{

super (cl assName, |ineNo, variabl eName);

170

/**
*
*

*

Upon each encountered breakpoint, this method will be executed when
i nvoked by the Faul t Manager

*@aram vm Virtual Machi ne where breakpoint occurred
*@aram frame Stack frame where breakpoint occurred
*@ar am object Reference bjectReference

*@aram currentTine The current tine

*@aram thread Thr ead wher e breakpoi nt occurred

*/

public voi d execut e(ThreadReference thread, Virtual Machine vm

St ackFrame frame, bjectReference objectReference, |ong currentTi me)

{
if (!tineTolnject(currentTine))
/Il 1t's not tinme to inject yet
return;
}
if (objectReference == null)
/1 If we are here then the frame is static ...
if (classType == null)
cl assType = Si npl eReposi tory. get Cl assType(cl assNane);
execut el nStati cFrane(t hread, vm frame, classType, currentTine);
}
el se
/1 If we are here then the frame is a non-static ...
execut el nNonSt ati cFrane(thread, vm franme, objectReference,
currentTine);
}
}
/**
* Upon each encountered breakpoint, this method will be executed when
* invoked by the Faul t Manager. (Non-Static Frame Version)
*
*@aram vm Virtual Machi ne where breakpoint occurred
*@aram frame Stack frame where breakpoi nt occurred
*@ar am object Reference bjectRef erence
*@aram currentTine The current tine
*@aram thread Thr ead wher e breakpoi nt occurred
*/

public voi d execut el nNonSt at i cFr ame(Thr eadRef er ence t hr ead,

Vi rtual Machi ne vm StackFranme frame, ObjectReference object Reference,
I ong currentTi ne)

try
{
if (field == null)

{
/1 Search for the field ...
Ref erenceType ref Typ = obj ect Ref erence. ref erenceType();
field = (Field) refTyp.fieldByNane(vari abl eNane);
if (field == null)
{

}

return;

171

if (typeName == null)

typeName = ((Field) field).type().toString();
/] Get the designated value for the field ...
Val ue val ue = get Val ueToSet (typeNane, vn);

if (value == null)

{
}

/'l Set the value and update nunOflterations counter
obj ect Reference. set Val ue((Fiel d) field, value);

return;

}
catch (Exception e)

/1 Sonet hi ng happened ... ignore for now

}
/**

* Upon each encountered breakpoint, this method will be executed when
* invoked by the Fault Manager. (Static Frame Version)

*

*@aram vm Virtual Machi ne where breakpoint occurred
*@aram frame Stack frame where breakpoi nt occurred
*@aram currentTime The current tine

*@aram thread Thr ead wher e breakpoi nt occurred

*@ar am cl assType Description of the Paraneter

*/

public voi d execut el nStati cFranme(Thr eadRef erence thread,
Vi rtual Machi ne vm StackFrame frame, C assType cl assType,
I ong currentTi ne)

{
try
{
if (field == null)
{
/1 Search for the field ...
field = (Field) classType.fieldByNanme(vari abl eNane) ;
if (field == null)
{
return;
}
}

if (typeName == null)

typeName = ((Field) field).type().toString();
/] Get the designated value for the field ...
Val ue val ue = get Val ueToSet (typeNanme, vn);

if (value == null)

{
}

/1 Set the value and update nunOflterations counter
cl assType. set Val ue((Field) field, value);

return;

}
catch (Exception e)
172

/1 Somet hi ng happened ... ignore for now

}

/**

* Resets cached vari abl es
*/

public void reset()

{
field = null;
typeName = nul | ;
cl assType = null;
super.reset();

173

E-13 PRIMITIVELOCALFAULT.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun. tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

i mport java.util.*;

/**

* The PrimtiveVariableFault class is responsible for accessing and

* corrupting local variables within a class' method.
*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 27, 2002
*/
public class PrimtivelLocal Fault extends PrimtiveFault
{
/'l Cached variables ... Attenpts to inprove performance.

/!l WIIl be reset each tine tests are rel oaded
private Local Variabl e local Variable = null;
private String typeNane = null;

public PrimtivelLocal Fault(String faul tNanme, String classNanme, int |ineNo,
String vari abl eNane)

super (faul t Name, classNane, |ineNo, variabl eNane);

/**

* (Qonstructor for the Fiel dFault object

*

*@aram classNane Class that fault is to be applied to

*@aram |ineNo Source line of class to apply fault
*@ar am vari abl eNane Name of |ocal variable to corrupt
*/

public PrimtivelLocal Fault(String classNane, int lineNo, String
vari abl eNane)

{

super (cl assName, |ineNo, variabl eName);

/**

* Upon each encountered breakpoint, this method will be executed when
* invoked by the Faul t Manager

*

*@aram vm Virtual Machi ne where breakpoint occurred
*@aram frame Stack frame where breakpoi nt occurred
*@ar am object Reference bjectRef erence

*@aram currentTine The current tine

*@aram thread Thr ead wher e breakpoi nt occurred

*/

public voi d execut e(ThreadReference thread, Virtual Machine vm
St ackFrame frame, bjectReference objectReference, |ong currentTi me)
{

/] Gotta be careful when making changes in this nmethod ...
if (!tineTolnject(currentTine))

{

return;

174

}

/! Process class local elenents ...
try
{

/! Search for the |ocal
if (localVariable == null)

ocal Variabl e = frane. vi si bl eVari abl eByNane(vari abl eNane) ;
f (local Variable == null)

I
i
{
return;
}
}
if (typeName == null)
typeNanme = | ocal Vari abl e.type().toString();
/] Get the designated value for the | ocal
Val ue val ue = get Val ueToSet (typeNane, vn);
if (value == null)

{
}

/1 Set the value and update nunOflterations counter
frane. set Val ue(l ocal Vari abl e, val ue);

return;

}
catch (Exception e)

/1 Somet hi ng happened ... ignore for now

}

/**

* Resets cached vari abl es
*/

public void reset()

{

| ocal Variable = null;
typeName = nul | ;
super.reset();

175

E-14 SIMPLEHARNESS.JAVA

| *
*/
| *

*

E I R S R T N R N N N N N N I T

/

@#) Sinpl eHarnness. java 1.3 01/12/03

Copyri ght 2002 Sun Mcrosystens, Inc. Al rights reserved.
SUN PROPRI ETARY/ CONFI DENTI AL. Use is subject to |license terns.

Copyright (c) 1997-2001 by Sun Mcrosystens, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
nodi fy and redistribute this software in source and binary code form
provided that i) this copyright notice and |icense appear on all copies of
the software; and ii) Licensee does not utilize the software in a manner
which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES, | NCLUDI NG
ANY | MPLI ED WARRANTY OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE
CR NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND | TS LI CENSORS SHALL NOT
BE LI ABLE FOR ANY DANMAGES SUFFERED BY LI CENSEE AS A RESULT OF USI NG

MODI FYI NG OR DI STRI BUTI NG THE SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL
SUN CR I TS LI CENSORS BE LI ABLE FOR ANY LOST REVENUE, PRCFIT OR DATA, OR FOR
DI RECT, | NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DANAGES,
HOWNEVER CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, AR SING OQUT OF
THE USE OF OR I NABILITY TO USE SOFTWARE, EVEN | F SUN HAS BEEN ADVI SED OF
THE PGSSI BI LI TY OF SUCH DANVAGES.

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft communications; or
in the design, construction, operation or naintenance of any nucl ear
facility. Licensee represents and warrants that it will not use or

redi stribute the Software for such purposes.

package si npl e;

i nport com sun.jdi.Virtual Machi ne;
i mport com sun. | di . Bootstrap;
i mport com sun.jdi.connect.*;

i mport java.util.Map;
i mport java.util.List;
import java.util.lterator;

inmport java.io.PrintWiter;
inmport java.io.FileWiter;
i mport java.io.l| CException;

import sinple.fault.*;
inmport sinple.util.~*;

/**
* The main programfor SIMPLE
*
* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado

*@r eat ed April 20, 2002

*/

public class Sinpl eHar ness

/] Default config file to use ... Should nmake the tester specify this for

176

/'l added flexibility ...
private final static String DEFAULT _CONFI G FILE = "Faul ts.xm";

/1 Running renote VM
private final Virtual Machine vm

/! The standard err |/ O stream
private Thread errThread = nul |;

/! The standard out |/ O stream
private Thread out Thread = nul |;

/!l The event-thread of the SUT JVM
private Event Thread event Thread = null;

/**

* The main programfor SIMLE

*

*@aram args The command |ine argunents

*/
public static void main(String[] args)
{
new Si npl eHar ness(ar gs) ;
}
/**

* Parse the command |ine argunents. Launch target VM Apply faults to
* target JVWM

*

*@aram args Description of the Paraneter
*

/
Si npl eHarness(String[] args)

if (args.length < 1)
{

Systemerr.println("args mssing");
Systemexit(1);

}
String filenane = args[0];
if (filename.indexOr (".xm") == -1)
{
Systemerr.printin("lnvalid xm arg");
Systemexit(1);
}
String argunents = "";
for (int i =1; i < args.length; i++)
{
argunents += args[i];
arguments += " ";
}
vm = | aunchTar get (ar gunent s) ;

vm set DebugTr aceMbde(0);

event Thread = new Event Thread(vm);
redi rect Qut put () ;

confi gur eFaul t sTol nj ect (fil enane);

event Thread. start();
vmresune();

177

/] Shut down begi ns when event thread term nates
shut down() ;

}
/**
* Description of the Method
*/
private void shutdown()
{
try
{ o
event Thread. j oi n();
errThread. join();
out Thread. j oi n();
catch (I nterruptedException exc)
/1 we don't interrupt
}
}
/**

* Reads, parses, and configures Faults fromthe Faults xm file
*

*@aram filenane Description of the Paraneter

*@eturn Description of the Return Val ue
*/
public void configureFaul tsTolnject(String filenane)
{

try

{

Faul t Par ser faul t Parser = new Faul t Parser (fil enane);
if (faul tParser. convertDocunment (DOM Util.readDocunent (fil enane)))

{
Systemout.println("Pre-instrument only.");
vmexit(l);
shut down() ;
Systemexit(1);
}
Faul t[] faults = faultParser.get Faul ts();
for (int i =0; i <faults.length; i++)
event Thr ead. addFaul t (faul ts[i]);
}
} .
catch (Exception e)
{
e. printStackTrace();
}
}
/**
* Redirects any output set forth by the SUT
*/
private void redirectQut put()
{

Process process = vm process();

/] Copy target's output and error to our output and error.

errThread = new StreanRedi rect Thread("error reader",
process.getError Strean(), Systemerr);

out Thread = new StreanRedi rect Thread(" out put reader",

178

process. getlnput Strean{), Systemerr);
errThread. start();
out Thread. start();

}
/**

* Launch target VM Forward target's output and error.
*

*@aram nai nArgs comrand-1ine argunents

*@eturn Virtual Machine that SUT will be running under
*/
private Virtual Machi ne | aunchTarget (String mai nArgs)
{
Launchi ngConnect or connect or = findLaunchi ngConnector ();
Map argunents = connector Argunent s(connector, mai nArgs);
try
{
return connector. | aunch(argunents);
}
catch (1 CException exc)
throw new Error("Unable to | aunch target VM " + exc);
catch (111 egal Connect or Argunent sExcepti on exc)
throw new Error("Internal error: " + exc);
}
catch (VMstart Exception exc)
{
throw new Error("Target VW failed to initialize: "
+ exc. get Message());
}
}
/**

* Find a comsun.jdi.ComandLi neLaunch connect or

*

*@eturn Launchi ngConnector - Not sure what this is
*/
private Launchi ngConnect or findLaunchi ngConnect or ()

{
Li st connectors = Boot strap. virtual Machi neManager (). al | Connectors();
Iterator iter = connectors.iterator();
while (iter.hasNext())
{
Connector connector = (Connector) iter.next();
i f (connector.name().equal s("com sun. jdi.CommandLi neLaunch"))
return (Launchi ngConnector) connector;
}
} .
throw new Error("No | aunching connector");
}
/**

* Return the launchi ng connector's argunents.

*

*@aram connector Connector used to connect with target JVM

*@ar am nai nArgs Command- | i ne ar gunent s

*@eturn Map of possible argunments

*/

private Map connect or Argunent s(Launchi ngConnect or connect or,
String mai nArgs)

179

Map argunents = connector. defaul t Argunent s();
Connect or. Argunment nai nArg = (Connector. Argunent)
argunents. get ("main");

if (muinArg == null)

throw new Error("Bad | aunchi ng connector");
}

mai nAr g. set Val ue(mai nArgs) ;

return argunents;

180

E-15 SIMPLEHELPER.JAVA

package sinple.util;
i mport dec.trek. *;

i mport java.util.*;

/**
* Helper class to be instrumented into the target SUT. Instrumentation into

* the SUT class files is necessary to ninimze the renote JVM access by the
* JPDA API.

*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed May 14, 2002
*/

public class Sinpl eHel per

{
/'l Constant indicating a Menory Exhaustion Faul t

private final static int MEM = 0;

/] Constant indicating a Processor Exhaustion Fault
private final static int PRC = 1;

/1 Constant indicating a Exception Fault
private final static int EXC = 2;

/'l Constant indicating a Delay Fault
private final static int DLY = 3;

/'l Used for calculating probabilities
private final static Randomrandom = new Random();

/1 Hol ds obj ect references generated via MenoryExhaust Faults ...
private static ArraylList objectReferences = new ArraylLi st ();

/1 Holds thread references generated via ProcessorExhaustFaults ...
private static ArraylList threadReferences = new Arrayli st ();

/1 Holds fault references generated via Processor ExhaustFaults ...
private static Hashtable faultRequests = new Hashtabl e();

// Holds starting tine
private static long clientStartTime = 0;

/! Hol ds overhead val ue

private static | ong overhead = 0; // NPA -- 062602
/] Clear arrays each tine this class is |loaded ...
static
reset();
}
/**
* Resets all supplenentary lists
*/
public static void reset()
{

overhead = 0; // NPA -- 062602
obj ect Ref erences. cl ear () ;

t hreadRef erences. clear();

faul t Requests. cl ear();

181

/**
*
*
*

*

Determ nes whether a specified fault will be injected. Several factors
play a role in this. For instance, the start/end tinmes, the
probability, and the nunber of iterations will be deciding factors.

*@aram type Type of fault

*@aram nane Name cl ass where fault is located

*@aram |ine Li ne nunber where fault is |ocated

*@aram startTine Start time to begin fault

*@ar am endTi e End tine to end fault

*@aram probability Probability to determ ne chance to invoke fault
*@aram nunOflterations Nunber of tines to invoke fault

*@eturn Det erm nes whether to inject the fault or not

*/

public static boolean timeTolnject(int type, String nane, int |ine,

{

/**

long startTime, |ong endTime, double probability, int numOflterations)

/] Get fault request. Create one if none is found.

String key = new StringBuffer().append(type).append(nane).append(":").
append(line).toString();

Faul t Request fault Request = (Faul t Request) faul t Requests. get (key);

if (faul t Request == null)

faul t Request = new Faul t Request (nuntX I terations);
faul t Request s. put (key, faultRequest);

}

/1 Any one of these conditions will return a fal se
if (faul tRequest.nunXIterations == 0 ||

Mat h. randon{) > probability)
{

}

long currentTine = -1;
/! Break nmust be set below...
if (currentTime == -1)

{
}

/] Check if fault is to be invoked dependi ng upon defined start and
/1 end tinmes
if (startTime < 0 || currentTine >= startTine)

return fal se;

currentTime = getClientCurrent Ti me();

if (endTime < 0 || currentTine < endTi ne)
/! Decrenment nunOflterations for the fault

faul t Request . nun¥ Iterations--;
return true;

}

return fal se;

Resets the client tine. Paraneters are dummy args for now Included to
hel p automatic processing of faults. WIIl fix later.

182

*@ar am nane N A
*@aram |ine N A
*@aram startTime NA
*@aram endTi e N A

* @ar am prob N A
*@aram nunter N A
*@aram arg N A
*/

public static void resetdientStartTime(String nane, int |ine, double prob,
int numter, long startTinme, |ong endTinme, int arg)

{
clientStartTine = SystemcurrentTineM | lis();
overhead = 0; // NPA -- 062602
//Systemout.printin("StartTime =" + clientStartTine); // NPA
}
/**

* Gets the clientCurrentTime attribute of the SinpleHel per class

*

*@eturn The clientCurrentTi ne val ue

*/

private static long getdientCurrentTi ne()

{
long clientCurrentTine = SystemcurrentTimeMIlis() - clientStartTi ne;
//Systemout.printin("QurrentTime =" + clientCurrentTine); // NPA
return (clientCQurrentTine - overhead); // NPA -- 062602

}

/**

* Responsi bl e for managi ng and executi ng Memmory- Exhaustion faults.
*

*@ar am nane Name of class that fault will be invoked in
*@aram |ine Source line of class to invoke fault

* @ar am prob Probability of fault

*@aram nunter Nunmber of times fault is to be invoked
*@aram startTine Starting tine of fault

*@ar am endTi e End tine of fault

*@aram arg Generic argunent

*/

public static void exhaust MenoryFaul t(String nane, int line, double prob,
int numter, long startTinme, |ong endTinme, int arg)

{
| ong overheadStart = SystemcurrentTimeMIlis(); // NPA -- 062602
if (tineTolnject(MEM name, line, startTine, endTine, prob, numter))
{
//Systemout.println("Menory Fault Invoked: " + arg);//NPA
for (int i =0; i < arg; i++)
{
obj ect Ref erences. add(new Cbj ect());
} }
| ong overheadEnd = SystemcurrentTimeM Ilis(); // NPA -- 062602
over head += (overheadEnd - overheadStart); // NPA -- 062602
}
/**

* Responsi bl e for managi ng and executi ng Processor-Exhaustion faults.
*

*@ar am nane Name of class that fault will be invoked in
*@aram |ine Source line of class to invoke fault
* @ar am prob Probability of fault

183

*@aram nunlter Nunmber of times fault is to be invoked
*@aram startTine Starting tine of fault

*@aram endTi e End tine of fault
*@aram arg Generic argunent
*/

public static void exhaustProcessorFault(String nane, int |ine,
double prob, int numter, long startTine, long endTinme, int arg)

{
| ong overheadStart = SystemcurrentTimeMIlis(); // NPA -- 062602
if (tineTolnject(PRC, name, line, startTine, endTine, prob, numter))
{
/] Systemout.println("Processor Fault Invoked: " + arg);//NPA
for (int i =0; i <arg; i++)
{
Thread thread = new Processor Thread();
t hr eadRef erences. add(t hr ead) ;
thread. start();
} }
| ong overheadEnd = SystemcurrentTimeM Ilis(); // NPA -- 062602
over head += (overheadEnd - overheadStart); // NPA -- 062602
}
/**

* Responsi bl e for managi ng and executing Exception-type faults. Need to
* add nore exception types, though.

*@ar am nane Name of class that fault will be invoked in
*@aram |ine Source line of class to invoke fault

* @ar am prob Probability of fault

*@aram nunter Nunmber of times fault is to be invoked
*@aram startTine Starting tine of fault

*@aram endTi e End tine of fault

*@aram arg Generic argunent

*/

public static void throwException(String name, int |ine, double prob,
int numter, long startTime, |ong endTinme, int arg)

{
| ong overheadStart = SystemcurrentTimeMIlis(); // NPA -- 062602
if (tineTolnject(EXC, name, line, startTine, endTine, prob, numter))
{
/] Systemout.println("Exception Fault Invoked: " + arg);//NPA
switch (arg)
case O:
t hrow new Nul | Poi nt er Excepti on
(" Nul | Poi nt er Excepti on generated by SIMPLE");
case 1:
t hrow new Qut O Menor yErr or
(" Qut O MenoryError generated by SIMPLE');
case 2:
t hrow new | ndexQut Of BoundsExcepti on
("I ndexQut O BoundsExcepti on generated by SI MPLE");
case 3:
throw new d assCast Excepti on
("d assCast Excepti on generated by SIMPLE");
case 4:
t hrow new Runti neExcepti on
(" Runti meExcepti on generated by SIMPLE');
} }
| ong overheadEnd = SystemcurrentTimeM Ilis(); // NPA -- 062602

184

over head += (overheadEnd - overheadStart); // NPA -- 062602

}

/**

* Responsi bl e for managi ng and executing Delay-type faults. Need to add
* nore exception types, though.

*

*@ar am nane Name of class that fault will be invoked in
*@aram |ine Source line of class to invoke fault

* @ar am prob Probability of fault

*@aram nunter Nunmber of times fault is to be invoked
*@aram startTine Starting tine of fault

*@aram endTi e End tine of fault

*@aram arg Generic argunent

*/

public static void forceDelay(String nanme, int line, double prob,

int numter, long startTime, |ong endTine, int arg)

{
| ong overheadStart = SystemcurrentTimeMIlis(); // NPA -- 062602
if (tineTolnject(DLY, name, line, startTine, endTine, prob, numter))
{
//Systemout.printin("Delay Fault |nvoked: " + arg);//NPA
try
Thr ead. sl eep(arg);
}
catch (Exception e)
/1 lgnore for now
} }
| ong overheadEnd = SystemcurrentTimeM I1is(); // NPA -- 062602
over head += (overheadEnd - overheadStart); // NPA -- 062602
}
/**
* The Faul t Request class handles fault attributes for the Test-Harness.
* |t is created to hel p manage client-side faults instrunented by the
* S| MPLE test harness.
*
* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado

*@reat ed May 22, 2002

*/

private static class Faul t Request

{

/**

* Nunber of iterations fault is to be invoked. WIIl be decrenented
* only upon successful execution of fault

*/

public int nunCflterations = O;

/**

* (Constructs a new <code>Faul t Request </ code> i nst ance.
*

*@aram nunOflterations Nunber of tines to invoke fault
*/

publ i c Faul t Request (int nunOflterations)

{

}

this.nunOlterations = nunOf | terations;

185

/

* %

* Thread objects that Processor-Exhaustion Faults will instantiate to

* simulate CPU worKk.
*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed May 16, 2002

*/

private static class Processor Thread extends Thread

{

/1 Some counter to keep the thread busy ...
private long counter = O;

/**
* Main processing nmethod for the ProcessorThread object
*/
public void run()
while (true)
{
count er ++;
/! Do we want to sleep here to relieve the CPU fromtinme to
/1 time?
}

186

E-16 SIMPLEREPOSITORY.JAVA
package sinple.util;

i mport java.util.*;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

import sinple.fault.*;

/**

* A sort of helper class that stores various objects
*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed July 30, 2002
*
/
public class Sinpl eRepository
{

/] Used to store classTypes in the case they are needed
private static HashMap cl assTypes = new HashMap();

/] Used to store event Requests in the case they are needed
private static Hashtable event Requests = new Hashtabl e();

private static HashMap faults = new HashMap();

/**

* Adds a referenceType to the d assType Hasht abl e

*

*@aram classType The feature to be added to the ClassType attribute

*/
public static void addd assType(d assType cl assType)
{
cl assTypes. put (cl assType. nane(), classType);
}
/**

* Gets a referenceType fromthe ReferenceType Hasht abl e

*

*@aram name Description of the Paraneter

*@eturn The referenceType val ue
*/
public static O assType getd assType(String nane)
{
return (d assType) classTypes. get(nane);
}
/**

* Description of the Method

*

*@ar am descriptor The descriptor of the fault
*@aram event Request The event-request
*/

public static void addEvent Request (String descri ptor,
Event Request event Request)
{

}

event Request s. put (descri ptor, event Request);

187

/**

* Enabl es pending faults upon demand ...
*
*@aram descriptor Description of the Paraneter
*/
public static void enabl eEvent Request (String descri ptor)
{
Event Request event Request = (Event Request)
event Request s. get (descriptor);
if (eventRequest != null)

{
}

event Request . enabl e() ;

}
/**

* Description of the Method

*

*@aram descriptor Description of the Paraneter
*/
public static void disabl eEvent Request (String descriptor)

Event Request event Request = (Event Request)
event Request s. get (descriptor);
if (eventRequest != null)

{
}

event Request . di sabl e() ;

}
/**

* Description of the Method

*

*@aram fault Description of the Paraneter
*/
public static void addFaul t (Fault fault)

faults. put (fault.get Faul t Name(), fault);
}

/**

* Description of the Method

*

*@aram faultNanme Description of the Paraneter
*@eturn Description of the Return Val ue
*/

public static Fault getFaul t(String faul t Name)

{

}

return (Fault) faults.get(faultNane);

188

E-17 SIMPLETREK.JAVA
package sinple.util;

i mport dec.trek. *;
i mport java.io.*;

/

*

* The SinpleTrek class uses Conpaq's JTrek APl to pre-instrunent particul ar
* faults into the SUT application byte-code. Mre specifically, The faults
* are the following: Menory Exhaustion, Processor Exhaustion, Delays, and
* Exception Throw ng.

*

* @ut hor Nei | Acantil ado

* @ut hor Chris Acantil ado

*@reat ed May 16, 2002

*/

public class SinpleTrek extends Trek

{

/**
* Name of client-side class that hel ps nanages S| MPLE faults.
*/
public final static String SIMPLE CLI ENT_CLASS =
"sinple.util.Sinpl eHel per”;

/**
* Name of client-side nethod that handles nenory exhaustion faults
*/
public final static String SIMPLE_ MEM METHOD = SI MPLE_CLI ENT_CLASS +
". exhaust Menor yFaul t";

/**
* Name of client-side nethod that handles processor exhaustion faults
*/
public final static String SIMPLE PRC METHOD = SI MPLE_CLI ENT_CLASS +
". exhaust ProcessFaul t";

/**
* Name of client-side nethod that handles thrown exception faults
*/
public final static String SIMPLE EXC METHOD = SI MPLE_CLI ENT_CLASS +
". throwException";

/**
* Name of client-side nethod that handles forced delay faults
*/
public final static String SIMPLE DLY_METHOD = SI MPLE_CLI ENT_CLASS +
".forceDel ay";

/**
* Nane of client-side nethod that handles start tine indicator narkers
*/
public final static String SIMPLE TI ME_METHOD = SI MPLE_CLI ENT_CLASS +
".resetClientStartTi ne";

/**

* Line nunber of the client-side utility to set breakpoints to
*/
public final static int SI MPLE_SCOURCE LI NE = 101;

/1 Name of the class to apply the instrumented fault
private String className = nul |;

189

/1 Line of the class to apply the instrumented fault
private int line = -1;

/1 Name of the nethod to be instrunmented into the SUT
private String nethodTol nsert = null;

/] The starting time to activate the fault
private long startTine = -1;

/'l The ending tine to activate the fault
private long endTinme = -1;

/Il The probability that the fault will occur during a run
private double probability = 1.0;

/1 The nunber of times that the fault will be applied
private int nunOflterations = -1;

/'l The generic argunment used by the specified client-side nethod. It is
/] used for various purposes.
private int arg = -1;

/] Determines whether fault is to be applied before or after the statenent
/] specified at the |ine nunber
private bool ean isBefore = true;

/] Boolean flag to determ ne whether fault has been applied successfully or
/1 not
private bool ean resolved = fal se;

/] Debug flag to enabl e/ di sabl e debug st at enents
private bool ean debug = fal se;

/1 Uility helper class that attenpts to synchronize byte-code |ine nunbers
/1 with source code |ine numbers.
private StatenentHel per statenentHel per = null;

/**

* Sets the debug attribute of the SinpleTrek object. Used for enabling or
* disabling debug statenents.

*@aram debug The new debug val ue

*/

protected void set Debug(bool ean debug)

t his. debug = debug;
}
/**
* Method that invokes the pre-instrunentati on phase for the automatic

* configuration of faults. Conveni ence nethod derived fromthe original

* jinstrunent nethod.
*

*@ar am cl assNane Classnanme to apply faults

*@aram |ine Li ne nunber of class to apply faults

*@ar am net hodTol nsert The client-side nethod to instrument

*@aram startTine The start time of faults

*@aram endTi e The end tine of faults

*@aram probability The fault probability

*@aram nunOflterations The nunber of tinmes the fault is to occur
*@aram arg Generic argunent used by the specified nethod
*@aram isBefore Determi ns where the faults shoul d be applied
*/

190

public void instrunent (String className, int line, String nethodTol nsert,

long startTime, |ong endTi me, double probability,
int nunOflterations, int arg, bool ean isBefore)

{
this.classNane = cl assNane;
this.line = 1ine;
t hi s. net hodTol nsert = net hodTol nsert;
this.startTine = startTi ne;
this.endTi ne = endTi ne;
this.probability = probability;
this.nunOlterations = nunOf | terations;
this.arg = arg;
this.isBefore = isBefore;
this.resol ved = fal se;
try
{ .
/1 Trekkie stuff
st at ement Hel per = new St at erent Hel per (cl assNane) ;
get CndLi ne(new String[]{cl assNane, "-ip", "sinple;.",
"-op", "sinple"});
doTrek();
endTrek();
/1 close the streans
st at enent Hel per. cl ose();
}
catch (Exception e)
{
e. printStackTrace();
}
/l Print out a warning if fault could not be instrunented for sone
/1l reason
if (!resol ved)
{
Systemout.println("ERROR Cannot instrunent class " + classNane
+" at line " + line + ".");
}
}
/**
* Method that invokes the pre-instrunentati on phase for the automatic
* configuration of faults.
*
*@ar am cl assNane Classnanme to apply faults
*@aram |ine Li ne nunber of class to apply faults
*@ar am nethodTol nsert The client-side nethod to instrument
*@aram startTine The start time of faults
*@aram endTi ne The end tine of faults
*@aram probability The fault probability
*@aram nunOflterations The nunber of tinmes the fault is to occur
*@aram arg Generic argunent used by the specified nethod
*/

public void instrunent (String className, int line, String nmethodTol nsert,

/**

long startTime, |ong endTi ne, double probability,
int nunOflterations, int arg)

i nstrunent (cl assNane, line, nethodTolnsert, startTine, endTine,
probability, nunOIterations, arg, true);

Met hod that invokes the pre-instrunentati on phase for the automatic

191

*
*

*

configuration of faults. Conveni ence method derived fromthe original
i nstrunent net hod.

*@ar am cl assNane O assnane to apply faults

*@aram |ine Li ne nunber of class to apply faults

*@aram nethodTolnsert The client-side method to instrunent

*/
public void instrunent (String className, int line, String nmethodTol nsert)
{

i nstrunent (cl assNane, |ine, nethodTolnsert, -1, -1, -1, -1, -1);

}
/**

*
*

Description of the Method

*@aram s Description of the Paraneter

*/

public void atStartOf (Statenent s)

/] Skip statenment if fault has already been resol ved
if (resolved)

{
return;
}
/Il Wth the statenentHel per, try to identify precisely the line nunber
// of this statement. It is essential that this be correct. Else,
/1 all is |ost

int sourceNunber = statement Hel per. get Li neNunber O St at emrent (s) ;
/1 Systemout. println(sourceNumber + ":" + s); // NPA

if (debug && sourceNunber > 0 &&
sour ceNunber < stat ement Hel per. get Tot al Nunber O Li nes())
{

Systemout. println(sourceNunber + ":" + s + " (TYPE = " +
} s.getType() + ")");

/1 1f this is the statenent we want, proceed with the
/] pre-instrunmentation process

i f (sourceNunber == line)
{
String name = s.getMethod().getC assFile().toQualifiedNane();
if (nane !'= null)
{
Call call = null;
if (isBefore)
call = Call.addBef or e(met hodTol nsert, s);
}
el se
call = Call.addAfter(nethodTol nsert, s);
}
/'l Hard-wire the rel evant argunents for the pre-instrunentation
/1 met hod

cal |l . passString(cl assNane) ;
call . passlnt(line);
cal | . passDoubl e(probability);

192

}

/**

call . passlnt(nunIterations);
cal | . passLong(startTine);

cal | . passLong(endTi ne) ;

cal |l . passlnt(arg);

/1 Clean up
call . done();

/! Indicate that fault has been resol ved
saveTrek();
resolved = true;

/1 Indicate success to the tester
Systemout.printin("Inserted " + nethodTol nsert);
Systemout.printin("\tat " + sourceNunber + ":" + s + "\n");

The main program for the SinpleTrek class

*@aram argv The command |ine argunents

public static void main(String[] argv)

{

Si npl eTrek sinpl eTrek = new Si npl eTrek();
si npl eTr ek. set Debug(true);
si npl eTrek. i nstrunent (" Test Progrant, -20, null, -1, -1, -1, -1, -1);

193

E-18 STARTTIME.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

/**

* This class represents a breakpoint action where StartTine is set
*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 28, 2002
*/
public class StartTi me extends Fault
{
/**

* Constructor for the StartTinme object
*

*@aram classNane Description of the Paraneter

*@aram |ineNo Description of the Paraneter
*/
public StartTime(String classNanme, int |ineNo)
{
super (cl assNane, |ineNo);
/**

* (Constructor for the execute object
*

*@aram vm N A
*@aram frame N A
*@ar am object Reference NA
*@aram currentTine N A
*@aram thread N A
*/

public voi d execut e(ThreadReference thread, Virtual Machine vm
St ackFrame frame, bjectReference objectReference, |ong currentTi me)

{}

194

E-19 STATEMENTHELPER.JAVA
package sinple.util;

i mport dec.trek. *;
i mport java.io.*;
i mport java.util.*;

/

* %

* The StatenentHel per class attenpts to synchroni ze the |ine nunber

* information enbedded within the byte-code with the actual |ine nunbers
* within the source code. It is especially inportant that this class does
* this correctly since the fault configuration relies heavily on the tester
* specifying correct |ine nunbers.

*

* @ut hor Nei | Acantil ado

* @ut hor Chris Acantil ado

*@reat ed May 21, 2002

*/

public class StatenentHel per

{

/1 The line nunber currently being processed.
private int currentLi neNumber = 0;

/1 The nane of the file being processed.
private String fileNane = null;

/] The fil eReader instance provides the 10 stream associated to the file
private Fil eReader fil eReader = null;

/1 The bufferedReader chains the fil eReader for conveni ence.
privat e BufferedReader bufferedReader = null;

/! The total nunber of lines within the file.
private int total NunCf Li nes = 0;

/] The text associated with the current line nunber that is being
/'l processed.
private String current Text = null;

/1 The index within the text that is currently being processed.
private int currentTextlndex = 0;

/**

* Constructor
*

*@aram classNane The class under inspection
*/

public Statenent Hel per (String cl assNane)

{

if (className.indexOF('$') !'= -1)
/1 W have an inner class here ...
int endl ndex = classNane.indexOf('$');
cl assNane = cl assNane. substring(0, endl ndex);

}
fileName = classNane.replace('.', '/').concat(".java");
try

Il First check if the class file has been preinstrunented earlier

195

fil eReader = new Fil eReader (fil eNane);
buf f er edReader = new Buff eredReader (fil eReader);

}
catch (Exception e2)

Systemout. println(e2. get Message());
}

/'l Figure out the total nunber of lines in this class
t ot al NunmX Li nes = get Tot al Nunber O Li nes(fil eNane) ;

Systemout.printin("Processing " + fileNane + "...");

}
/**

* Gets the total NunberOf Lines attribute of the StatenentHel per object

*

*@aram fileNane The nane of the file that corresponds to the class

*@eturn The total Nunber & Li nes val ue
*/
public int getTotal Nunber Of Lines(String fil eNane)
{

t ot al Nun¥ Li nes = 0;
try
{
/] Setup the file I/0O

Fil eReader fr = new Fil eReader (fil eNane);
Buf f eredReader br = new BufferedReader (fr);

/1 Count each line
while (br.readLine() !'= null)

t ot al Nunt¥ Li nes++;
}
/!l Close all streans
br.close();
fr.close();

}
catch (Exception e)

{
e. printStackTrace();
}
return total NunOf Li nes;
}
/**

* Gets the total NunberOfLines attribute of the StatenentHel per object

*

*@eturn The t ot al Nunber O Li nes val ue

*/
public int getTotal Nunber O Li nes()
{
return total NunOf Li nes;
}
/**

* Gets the |ineNunberOf Statement attri bute of the StatenentHel per object

*

*@aram stnt The statenent whose |ine nunber we are trying to figure out
*@eturn The |ineNunber O St at enent val ue

196

*/
/*
public int getLineNunber O St at enent (St at enent stnt)
{

String match = nul|;

/] Determ ne what kind of statenent we are processing by querying its
/] type attribute.

int type = stnt.getType();

switch (type)

{

case Trek. ST_BREAK:
match = "break";
br eak;
case Trek. ST_CASE:
/] Case label could be 'default' or 'case'
match = "default";
String tenpStr = stnt.toString();
if (tenpStr !'= null && tenpStr.indexOF("case") = -1)

match = "case";
}
br eak;
case Trek. ST_CONTI NUE:
match = "conti nue";
br eak;
case Trek. ST_DG
match = "do";
br eak;
case Trek. ST_FOR
match = "for";
br eak;
case Trek. ST_IF:
match = "if";

case Trek. ST_TRY:
match = "try";
br eak;
case Trek. ST_WH LE:
match = "while";
br eak;
case Trek. ST_CATCH:
match = "catch";
br eak;
defaul t:
/Il 1f its none of the above, then we can go ahead and ask
/1 JTrek to get the line nunber for us ...
int linum = stnt.getAdj ust edSour ceNunber ();
if (linum> 0)

/1 Advance to the line
advanceToLi neNunber (i nunm;

return |inum

}

/] Need to return the precise source code |ine nunber that natches our
/1l statenent.
return getLi neNunber O St at enent (mat ch) ;

/**

197

*

*

*@aram stnt

Gets the lineNunmberOf Statenent attribute of the Statenent Hel per object

The statenment whose |line nunber we are trying to figure out

*@eturn The |ineNunber O St at enent val ue

*/

public int getLineNunber O™ St at enent (St at enent stnt)

{

/] Get the statenent's |ine nunber ...
int linum = stnt.get Adj ust edSour ceNunber ();
if (linum> 0)

/] Advance file pointer appropriately ...
advanceToLi neNunber (i nunm ;
return |inum

else if (linum== -1)

/]l 1f it's a statenent that doesn't have an associ ated internal
/1 method |ine nunber, then return imedi ately
return -1;

}
String match = nul | ;

/] Determ ne what kind of statenent we are processing by querying its
/] type attribute.

int type = stnt.getType();

switch (type)

{

case Trek. ST_BREAK:
match = "break";
br eak;
case Trek. ST_CASE:
/! Case label could be 'default' or 'case'

match = "default";
String tenpStr = stnt.toString();
if (tenpStr !'= null && tenpStr.indexOF("case") = -1)
match = "case";
}
br eak;
case Trek. ST_CONTI NUE:
match = "conti nue";
br eak;
case Trek. ST_DG
match = "do";
br eak;
case Trek. ST_FOR
match = "for";
br eak;
case Trek. ST_IF:
match = "if";
br eak;

case Trek. ST_TRY:
match = "try";
br eak;

case Trek. ST_WH LE:
match = "while";

br eak;

case Trek. ST_CATCH:
match = "catch";
br eak;

defaul t:

198

return -1;

}

/] Need to return the precise source code |line nunber that natches our
/1l statenent.
return getLi neNunber O St at enent (mat ch) ;

}

/**

* Description of the Method

*

*@aram |inum Description of the Paraneter
*/

public voi d advanceToLi neNunber (int Iinum

{

/1 1f the line nunber is out of range, then obviously we cannot advance
/1 the file pointer
if (linum<= 0 && linum> total NumX Li nes)

{
return;
}
try
{
current Text | ndex = 1;
/] Go ahead and read the specified nunber of lines to get back
/1 in synch
whil e (currentLi neNunber < |inum
{
current Text = bufferedReader.readLine();
current Li neNunber ++;
}
} .
catch (Exception e)
{
e. printStackTrace();
}
}
/**
* Gets the statenent |ine nunber based on the argunent. What we are
* trying to do here is find the statenent within the source code that
* matches what we are looking for. If we have a match, then return the
* line nunber of the source code statenment that matched what we needed.
*

*@aram textToFind This is the text we need to find within the
* sour ce code

*@eturn The |ine nunber of the statenent within the source
* code where the match was found.
*/
public int getLineNunber O Stat ement (String textToFi nd)
while (currentText != null)
{

/!l First check within the line to see if we can find a match
current Text I ndex = current Text.i ndexOf (t ext ToFi nd,
current Text | ndex) ;
if (currentTextlndex != -1)
{
/1 A match has been found, return the |ine nunber
// But first, nove the text pointer so we won't process the
/1l same string
current Text | ndex++;

199

return currentLi neNunber ;

/'l 1f a match is not found on this line, get an entirely new
/1 line. Should actually use JavaCC here ...

current Text = bufferedReader.readLine();

if (currentText == null)

{

br eak;

}

/] Set the pointer to the beginning of the line
current Text|l ndex = O;

/! Increnment to the next line

current Li neNunber ++;

}
catch (Exception e)

{
e. printStackTrace();
}
}
/1l 1f we get to here, then we have fail ed sonehow ...
return -1;
}
/**
* (doses the File I/ 0O streans.
*/
public void cl ose()
{
try
buf f er edReader . cl ose() ;
fil eReader.cl ose();
}
catch (Exception e)
{
e. printStackTrace();
}
}

200

E-20 STREAMREDIRECTTHREAD.JAVA

/*
* @#) StreanRedirect Thread. javal. 3 01/12/03
*
* Copyright 2002 Sun Mcrosystens, Inc. Al rights reserved.
* SUN PROPRI ETARY/ CONFI DENTI AL. Use is subject to license terns.
*/
/*

*

Copyright (c) 1997-2001 by Sun Mcrosystens, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
nodi fy and redistribute this software in source and binary code form
provided that i) this copyright notice and |icense appear on all copies of
the software; and ii) Licensee does not utilize the software in a manner
which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR | MPLI ED CONDI TI ONS, REPRESENTATI ONS AND WARRANTI ES, | NCLUDI NG
ANY | MPLI ED WARRANTY OF MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE
CR NON- | NFRI NGEMENT, ARE HEREBY EXCLUDED. SUN AND | TS LI CENSORS SHALL NOT
BE LI ABLE FOR ANY DANMAGES SUFFERED BY LI CENSEE AS A RESULT OF USI NG

MODI FYI NG OR DI STRI BUTI NG THE SOFTWARE OR | TS DERI VATI VES. I N NO EVENT WLL
SUN CR I TS LI CENSORS BE LI ABLE FOR ANY LOST REVENUE, PRCFIT OR DATA, OR FOR
DI RECT, | NDI RECT, SPECI AL, CONSEQUENTI AL, | NCI DENTAL OR PUNI Tl VE DANAGES,
HOWNEVER CAUSED AND REGARDLESS OF THE THEORY OF LI ABILITY, AR SING OQUT OF
THE USE OF OR I NABILITY TO USE SOFTWARE, EVEN | F SUN HAS BEEN ADVI SED OF
THE PGSSI BI LI TY OF SUCH DANVAGES.

This software is not designed or intended for use in on-line control of
aircraft, air traffic, aircraft navigation or aircraft communications; or
in the design, construction, operation or naintenance of any nucl ear
facility. Licensee represents and warrants that it will not use or

redi stribute the Software for such purposes.

E I R S R T N R N N N N N N I T

/
package sinple.util;
i mport java.io.*;

/**
* StreanRedirect Thread is a thread which copies it's input to it's output and

* terminates when it conpl etes.
*

* @ut hor Robert Field

*@reat ed April 7, 2002

*@ersion

*@#) St reanRedi rect Thread. java 1.3 01/ 12/03 00: 15: 38
*/

public class StreanRedirectThread extends Thread
{
private final Reader in;
private final PrintStream out;
private final static int BUFFER_SI ZE = 2048;
private char[] cbuf = new char[BUFFER_SI ZE] ;

/**

* Qonstructor for the StreanRedirect Thread object

*

*@aram name Description of the Paraneter

*@aram in Description of the Paraneter
* @ar am out Description of the Paraneter
*/

201

public StreanRedirect Thread(String name, | nputStreamin, PrintStream out)
{

super (nane) ;

this.in = new I nput StreanReader (in);

this.out = out;

setPriority(Thread. MMX PRRORITY - 1);

}
/**
*/ Copy.
public void run()
{
try
o
int count;
while ((count = in.read(cbuf, 0, BUFFER SIZE)) >= 0)
String output = new String(cbuf, 0, count);
out. print (output);
output = null;
}
out. flush();
}
catch (1 CException exc)
Systemerr.printIn("Child I/O Transfer - " + exc);
}
}

202

E-21 UPDATETIME.JAVA
package sinple.fault;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun.tool s. exanpl e. debug. bdi . *;

inmport sinple.util.~*;
i mport java.util.*;

/**

* This class represents a breakpoint action where tine is updated
*

* @ut hor Nei | Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 27, 2002
*/
public class UpdateTime extends PrimtiveFault
{
/**
* Qonstructor for the Fiel dFault object
*/
publ i ¢ Updat eTi ne()
{
super (Si npl eTrek. SI MPLE_CLI ENT_CLASS, Si npl eTr ek. SI MPLE_SQURCE_LI NE,
"current Ti me");
}
/**
* WII update tine on the SinpleHel per on the target JVM
*
*@aram vm The target virtual machine
*@aram frame The frane the breakpoi nt was invoked in
*@aram objectReference The objectReference. Is null if static.
*@aram currentTine The current Ti e
*@aram thread The thread the breakpoint was invoked in
*/
public voi d execut e(ThreadReference thread, Virtual Machine vm
St ackFrame frame, bjectReference objectReference, |ong currentTi me)
{
/1 Process class |local elenents ...
try
{
/1 Search for the |ocal
Local Vari abl e I ocal = frame. visi bl eVari abl eByNane(var i abl eNane) ;
if (local == null)
{
return;
}
/1 Set the value and update nunOf I terations counter
franme. setValue(local, vmmrrorCOf (currentTine));
}
catch (Exception e)
/1 Somet hi ng happened ... ignore for now
}
}
}

203

E-22 UTIL.JAVA
package sinple.util;

i mport comsun.jdi.¥*;

i mport com sun.jdi.request.*;

i mport comsun.jdi.event.*;

i mport com sun.tool s. exanpl e. debug. expr. *;
i mport com sun. tool s. exanpl e. debug. bdi . *;

/**

* Description of the dass
*

* @ut hor nacanti |
*@reat ed April 27, 2002
*
/
public final class Uil
{

private final stati
private final stati
private final stati
private final stati
private final stati
private final stati

String bool Type = "bool ean";

String intType = "int";

String doubl eType = "doubl e";

String fl oat Type = "float"”;

String longType = "long";

String stringType = "java.lang. String";

OO0 0O0OO0

/**

* Description of the Method

*

*@aram type Description of the Paraneter

*@aram vm Description of the Paraneter
*@eturn Description of the Return Val ue
*/

public static Val ue createRandonVal ue(String typeNane, Virtual Machi ne v

{
if (typeName == null)

return null;

}
i f (typeNane. equal s(bool Type))

bool ean randBool = fal se;
if (Math.randon() > 0.5)

randBool = true;

}

return vmmrror O (randBool) ;

}
i f (typeNane. equal s(intType))
{

int randint = (int) (Mth.randon() * 1000.0);
if (Math.randon() > 0.f)

randlnt *= -1;

}

return vmmrrorOf (randint);

}
i f (typeNane. equal s(doubl eType))

doubl e randDbl = (double) (Math.randon() * 1000.0);
if (Math.randon() > 0.5)

204

randDbl *= -1.0;
}

return vmmrrorOf (randDbl);

}
i f (typeNane. equal s(fl oat Type))

float randFlt = (float) (Math.randon() * 1000.0);
if (Math.randon() > 0.5)

randFlt *= -1.0f;

}
return vmmrrorOf (randFlt);
}
if (typeNane.indexO (stringType) != -1)
doubl e garbage = (float) (Math.randon() * 1000.0);
return vmmrror O (String. val ueX (gar bage)) ;
}
Systemout.printin("Error in createRandonValue: " + typeNanme +
not currently supported.");
return null;
}
/**

* Description of the Method

*

*@aram type Description of the Paraneter
*@aram val ToSet Description of the Paraneter
*@aram vm Description of the Paraneter
*@eturn Description of the Return Val ue
*/

public static Value createValue(String typeName, String val ToSet,
Vi rt ual Machi ne v
{

if (typeName == null)
{

return null;

}
i f (typeNane. equal s(bool Type))
{

return vm m rror O (Bool ean. val ueX (val ToSet) . bool eanVal ue());

}
i f (typeNane. equal s(intType))
{

return vmmrror O (I nt eger. parsel nt(val ToSet));

}
i f (typeNane. equal s(doubl eType))
{

return vm m rror O (Doubl e. par seDoubl e(val ToSet));
}

i f (typeNane. equal s(fl oat Type))

return vmmrror O (Fl oat . par seFl oat (val ToSet));

205

i f (typeNane. equal s(|ongType))
{

return vm m rror O (Long. parseLong(val ToSet));

}
if (typeNane.indexO (stringType) != -1)
{
return vmmrrorOf (val ToSet);
}
Systemout.printin("Error in createValue: " + typeNanme +
not currently supported.");
return null;

206

E-23 UTILITYASPECT.JAVA

package si npl e. aspect;

i mport java.util.*;

i mport sinple.*;
import sinple.fault.*;
/**

* This is an aspect that updates the tine for the event-thread
*

* @ut hor Nei| Acantil ado
* @ut hor Chris Acantil ado
*@reat ed April 7, 2002
*@ersion
*/
privil eged aspect WilityAspect
{

private Event Thread event Thread = null;
private Cal endar cal endar = Cal endar. get | nstance();

/'l Advice will get a refernce to the Event Thread instance
af ter (Event Thread event Thr ead):
target (event Thread) && executi on(Event Thread. new(..))

t hi s. event Thread = event Thr ead;

}

/1l Advice will reset the event Thread startTi ne whenever the execute nethod
/]l of a StartTine instance is invoked.
after(): execution(* StartTi ne.execute(..))

event Thread. set Start Ti me() ;

207

THIS PAGE INTENTIONALLY LEFT BLANK

208

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, VA

Dudley Knox Library
Naval Postgraduate School
Monterey, CA

Professor Bret Michael
Naval Postgraduate School
Monterey, CA

Professor Richard Riehle

Naval Postgraduate School
Monterey, CA

209

